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Abstract

This thesis mainly investigates the kernel learning-based approach for outlier (nov-

elty or anomaly or negative) detection using one-class classification (OCC). OCC is

a non-traditional way of classification where the model is built using samples from

only one class, and samples from this class belong to normal (positive or target) class.

The one-class classifier classifies any unknown class other than the normal class as an

outlier class. All proposed one-class classifiers in this thesis are developed based on

the boundary and reconstruction frameworks.

In recent years, kernel ridge regression (KRR) (or least squares support vector

machine with zero bias or kernel extreme learning machine) based one-class classifiers

have received quite an attention by researchers. Researcher developed a KRR-based

one-class classifier for boundary framework. We have developed it for the recon-

struction framework. For further performance improvement, we have combined the

concept of both the frameworks in a single multi-layer architecture. This architecture

is formed by sequential stacking of various KRR-based Auto-Encoders, followed by

a KRR-based one-class classifier. The stacked architecture provides a better repre-

sentation of the data using representation learning, which helps in obtaining better

classification compared to single hidden layer-based architecture. Further, this multi-

layer architecture is extended to use structural information between samples using

a Graph-Embedding approach. The structural information is generated by different

types of Laplacian graphs and embedded into the existing multi-layer architecture.

Later, we have explored multiple kernel learning (MKL) for one-class classification,

which captures different notions of the data using different types of kernels. Existing

MKL-based one-class classifier assigns equal weights to each kernel over the whole

input space. In our work, we have developed localized multiple kernel learning based

one-class classifiers, which assign weights to each kernel based on locality present in

the data. These weights are assigned with the help of a gating function in the opti-

mization problem. In order to handle the privileged information during learning, we

have extended the two KRR-based one-class classifiers (boundary and reconstruction

i



framework-based classifiers) for utilizing privileged information using learning using

privileged information (LUPI) framework. In last, we have also enabled these two

KRR-based one-class classifiers (boundary and reconstruction framework-based clas-

sifiers) to handle the non-stationary data streams efficiently.

Overall, this thesis contributes by developing various kernel-based learning meth-

ods for various types of learnings viz; representation learning, multi-layer learning,

multiple kernel learning, LUPI framework-based learning, and online learning.

All these developed methods are evaluated exhaustively to compare with the var-

ious state-of-the-art OCC methods in terms of various performance evaluation criteria.

Keywords: Kernel Ridge Regression, One-class Classification, Kernel Learning,

Auto-Encoder, Representation Learning, Multi-layer, Graph-Embedding, Multi-kernel

Learning, Support Vector Machine, LUPI Framework, Online Learning
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Chapter 1

Introduction

Over the years, advances in machine learning have attracted the research commu-

nity, particularly for classification. This involves a variety of problems viz., binary

class classification, multi-class classification, and one-class classification. In the case

of binary class classification, a sample would be classified in either of the existing two

classes irrespective of the fact whether it belongs to those two classes or not. There

is a situation when samples of only one class are available to build a model, and

this model has to identify the unknown (or outlier) sample, which does not belong

to this class. In this thesis, we are focusing on handling this situation only. It can

be resolved by using the one-class classification (OCC). Following examples provide a

better understanding of OCC:

(i) Fraud detection [16]: Financial fraud detection is one of the best-suited exam-

ples for OCC. Since the nature of fraud keeps changing, it is challenging to char-

acterize all possible nature of fraud. In contrast, user behavior does not change;

therefore, we can construct a model based on user behavior. This constructed

model treats all behavior other than user behavior as anomalous behavior. There

is one more possibility here that how classifier works if user behavior changes?

For this purpose, online learning [15] (learning on the fly) is introduced with

OCC, which updates the model as per requirement.

(ii) Face verification [17, 18]: When you have to verify a face, outlier class can not

be defined because all possible faces on the earth except target face belong to this

1



class. Therefore, OCC is the most suitable method for verification purpose [17,

18] as there is no need to define outlier class.

(iii) Signature verification [19]: Similar to face verification, there is only need to

train the model using the signature of specific person for verification.

Similarly, OCC has been broadly applied in various domains, like information

retrieval [2], recommender system [20, 21], remote-sensing [22], biometric fusion [23],

machine fault detection [24], bioinformatics [25], and disease detection [26].

1.1 Background

The OCC problem is entirely different from the traditional (binary or multi-class)

classification problem. The assumption in OCC is that data from only one class is

available for building the model. Here, a one-class classifier constructs a discrimination

boundary from the information of only one class. This class is called a target class

(or normal or genuine or positive class), and remaining samples, which do not belong

to this class, are termed as the outlier (or anomalous or negative). In contrast to the

one-class classifier, the binary class classifier constructs the decision boundary by the
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Figure 1.1: Decision boundary constructed by a support vector machine-based binary
and one-class classifier
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support of samples from both classes, i.e., target and outlier class. Decision boundary

construction of binary and one-class classification is visualized in Figure 1.1. Generally,

OCC comes into the picture when a sufficient number of samples are available from the

target class but not from another class. This unavailability of data is due to various

reasons [6], such as the very high measurement costs, the less occurrence of an event,

failure of a nuclear power plant, a rare medical disease, and machine fault detection.

Moreover, an insufficient amount of samples can not characterize the complete nature

of another class, and this might lead to a poor classification model. Overall, a one-

class classifier learns from the samples of the target class and minimizes the possibility

of accepting the outlier sample.

In literature [27, 28], OCC has been primarily applied for novelty or outlier de-

tection. Moya et al. [29] coined the word ‘one-class classification’ and employed a

one-class classifier for target recognition application. Further, Japkowicz [30] pro-

posed an auto-association-based approach for OCC, which is a neural network-based

approach and termed as “concept learning in the absence of counterexamples”. In

the same year, kernel-based one-class classifiers are proposed [1, 31]. Kernel-based

one-class classifiers can be broadly divided into two categories [6]: (i) reconstruction-

based (ii) boundary-based. Reconstruction-based methods reconstruct the input space

at the output layer and provide more compact representation of the target data. These

method perform OCC based on the reconstruction error at the output layer. Hoff-

mann [4] proposed reconstruction-based one-class classifier by considering kernel prin-

cipal component analysis (KPCA) as a base method. Boundary-based methods con-

struct classifier’s boundary based on the the structure of the dataset. Two popular

SVM-based one-classifiers are developed for boundary-based, viz., one-class support

vector machine (OCSVM) [1] and support vector data description (SVDD) [31, 6, 3].

Researchers employed both methods (i.e., OCSVM and SVDD) in various discipline

for solving different types of problem, like document classification [2], fMRI analy-

sis [32], seizure detection [33], novelty detection [34], and Fabric defect detection [35].

As SVM follows the iterative approach of learning, therefore, SVM-based one-class

classifiers are computationally expensive. Choi [36] and Leng et al. [7] addressed this
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issue by proposing a least squares-based one-class classifier. Choi [36] and Leng et

al. [7] selected least squares SVM and kernel extreme learning machine as a base clas-

sifier, respectively. Least squares-based one-class classifier is further enabled to embed

structural information within its optimization problem [8, 17]. Structural information

provides more representation power to the method.

Further, kernel learning-based OCC has been explored in a few more interesting

directions, like multiple kernel learning [11], learning using privileged information

(LUPI) framework-based learning [37, 38, 39] and online learning [40, 41, 42]. Multiple

kernel learning (MKL) selects the best performing kernel among a predefined set of

kernels. These kernels can be generated either by using different types of kernels or

same kernel on different sources of data. Das et al. [11] introduced multiple kernel

learning-based one-class classifier for anomaly detection in aviation data. In recent

years, LUPI framework got quite a popularity due to its non-conventional way of

learning. It introduced human teaching into traditional machine learning. In recent

years, various researchers [37, 38, 39] developed it for OCC. Another quite interesting

learning approach is online learning, which is the requirement of real-time learning in

these days. In these days, data is generating continuously, and their characteristics also

change as time passes. These data can be either stationary or non-stationary. Above

mentioned one-class classifiers can efficiently handle stationary data, but unable to

do so for non-stationary data. Researchers addressed this issue by developing online

learning-based one-class classifier, like online SVDD [40], online OCSVM [40, 41, 42],

and online kernel principal component analysis-based one-class classifier [4].

1.2 Motivation

Researchers have shown that kernel learning-based one-class classifiers have per-

formed very well for various application domains [3, 27, 28]. However, these kernel

learning-based one-class classifiers are computationally expensive due to the iterative

approach of learning. Hence, there is a need to develop a non-iterative model for OCC.

In recent years, few researchers have developed the non-iterative learning-based model

4



for multi-class classification [43, 44, 45]. They combined representation learning with

kernel learning for this purpose. Representation learning is being quite popular in the

field of machine learning [46] due to its better data representation capability to per-

form classification more precisely. By taking a cue from these points, we also endeavor

to explore the kernel-based representation learning for OCC. Thus, we propose single

hidden layer and multi-layer one-class classifiers based on the representation learning

by considering KRR as a base classifier. To provide more expressive power to the

proposed multi-layer architecture, we explore structural information of data with this

multi-layer architecture using a Graph-Embedding approach [47]. Further, to cap-

ture different notions of the data using different types of kernel, we explore multiple

kernel learning (MKL) [48] for OCC. Das et al. [11] obtained good performance by

combining multiple kernels in a single objective function with equal weight to each

kernel. However, each kernel doesn’t need to be equally important. We address this

issue by developing two multiple kernel learning methods, which assigns the weight

to each kernel, based on the underlying localities in the data. At the end, we enable

KRR-based existing [7] and developed one-class classifiers to handle two types of in-

formation: (a) privileged information [13], (b) non-stationary streaming data [15, 49].

We explore LUPI framework-based learning [13] for handling privileged information,

and online learning for handling non-stationary streaming data [15, 49]. Overall, this

thesis endeavors to address various issues of the existing kernel-based methods for

solving OCC problems.

1.3 Objectives

In this thesis, we aim to achieve the following objectives:

(i) To develop a reconstruction framework-based one-class classifier using kernel

learning.

(ii) To develop a method, which can combine the concept of boundary and recon-

struction in a single architecture. This architecture should also be capable of

embedding structural information within it.
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(iii) To develop boundary framework-based methods, which can explore the different

localities present in the data by using various types of kernels.

(iv) To enable boundary and reconstruction framework-based methods for handling

privileged information efficiently for OCC.

(v) To enable boundary and reconstruction framework-based methods for handling

non-stationary streaming data efficiently for OCC.

1.4 Thesis Contributions

Figure 1.2 depicts the connection between the research contribution of this thesis.

A brief overview of our research contributions is provided below, and more details are

available in the later chapters.

Contribution I:

The performance of machine learning algorithms heavily depends upon the repre-

sentation of the data [46]. Therefore, a lot of effort has been made in this field and

explored for various types of machine learning tasks. Recently, it has been explored

for kernel learning-based binary and multi-class classification [44, 45]. In this thesis,

we explore representation learning by developing of single hidden-layered vanilla

kernel ridge regression (KRR) based Auto-Encoder for OCC. Proposed OCC method

is primarily based on reconstruction error. This method is less computationally

expensive compared to traditional kernel-based OCC methods (like OCSVM and

SVDD) because it follows the non-iterative approach of learning.
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Contribution II:

We further explore representation learning for the development of a multi-layer

architecture. This architecture is formed by stacking various single hidden-layered

KRR-based Auto-Encoders sequentially, followed by a KRR-based one-class classifier

at the last layer. These stacked Auto-Encoders provide a better representation of

data so that a one-class classifier can classify the data more precisely. Further, the

optimization problem is extended to use structural information between samples in

its formulation. This information is generated by different types of Laplacian graphs

and embedded into the existing multi-layer architecture.

Contribution III:

In order to capture different notions in the data, multiple kernel learning (MKL)

is required. Unlike the multi-layer-based method (as discussed in Contribution

II), the MKL-based method optimizes multiple kernels simultaneously in a single

optimization function. Existing MKL-based one-class classifier does not explore

the locality present in the data and also assign equal weight to each kernel. For

addressing these issues, we introduce the concept of localization with multiple kernel

learning for OCC. Localization assigns different weight to each kernel and optimizes

those weights by a two steps alternate optimization scheme [50, 12]. We develop two

localized MKL-based one-class classifiers for anomaly detection by taking OCSVM

and SVDD as a base classifier.

Contribution IV:

Existing KRR-based one-class classifiers are unable to handle privileged informa-

tion. This information is generally available for training; however, it is not available

for testing. In order to handle this issue, we incorporate the concept of learning using

privileged information (LUPI) with two types of KRR-based single hidden-layered

one-class classifiers. One of the proposed classifier is boundary framework-based and

another is reconstruction framework-based classifier.

7



Contribution V:

The research contributions discussed till now have assumed that data is stationary

in nature and the whole data is available for training before it starts. However, in the

real-time scenario, data is available in the form of continuous streams. These contin-

uous streams can be either stationary or non-stationary. To handle this situation, we

enhance boundary and reconstruction framework-based one-class classifiers for online

sequential learning, which can handle non-stationary and streaming data efficiently.

We test the proposed methods for various types of drift in a controlled environment.

1.5 Organization of the Thesis

This thesis is organized into nine chapters. A summary of each chapter is provided

below:

Chapter 1 (Introduction)

This chapter describes background knowledge of OCC, the motivation of our

work, and the contribution of this thesis.

Chapter 2 (Literature Survey and Research Methodology)

This chapter provides a detailed literature survey and a summary of various state-

of-the-art kernel-based methods. It also provides evaluation metrics for performance

analysis.

Chapter 3 (Kernel Ridge Regression-based Auto-Encoder for One-class

Classification)

In this chapter, a reconstruction framework-based one-class classifier is presented

for OCC using KRR.

Chapter 4 (Multi-layer Kernel Ridge Regression for One-class Classifica-

tion)

In this chapter, we present a multi-layer architecture for OCC. For developing a

multi-layer architecture, Auto-Encoder presented in Chapter 3 is stacked sequentially

one after another, followed by a one-class classifier.
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Figure 1.2: Overall work-flow of this thesis
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Chapter 5 (Graph-Embedded Multi-layer Kernel Ridge Regression for

One-class Classification)

The method proposed in Chapter 4 does not consider structural information

between samples. For addressing this issue, this chapter includes the proposal of

using the Graph-Embedding approach, which explores structural information with

multi-layer architecture.

Chapter 6 (Localized Multiple Kernel Learning for One-class Classifica-

tion)

The presented methods in Chapters 4 and 5 employ the kernel-based method

at multiple layers sequentially. Instead of a sequential combination of kernels, we

optimize multiple kernels simultaneously in a minimization problem, and the same is

presented in this chapter.

Chapter 7 (Learning Using Privileged Information with Kernel Ridge

Regression for One-class Classification)

None of the methods discussed in the previous chapters are capable of utilizing

privileged information with their optimization problem. This chapter presents the

extension of two KRR-based one-class classifiers for utilizing privileged information

with their optimization models.

Chapter 8 (Adaptive Online Sequential Learning with Kernel Ridge

Regression for One-class Classification)

Methods presented in the previous chapters can only handle stationary data. This

chapter presents two online learning methods for handling non-stationary streaming

data.

Chapter 9 (Conclusions and Future Work)

This chapter briefly describes the contribution of this thesis and the possible

future directions of our work.
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Chapter 2

Literature Survey and Research

Methodology

This chapter provides a detailed literature review for kernel learning-based OCC

and identifies the gap in the literature. We have divided the whole literature into six

sections. Section 2.1 provides preliminaries on OCC and kernel trick before proceed-

ing to the literature survey in further sections. Section 2.2 discusses various kernel

learning-based one-class classifiers and their applications, Section 2.3 provides a brief

literature on Auto-Encoder, and Section 2.4 discusses about Graph-Embedding and

Graph-Embedding based one-class classifiers. Section 2.5 discusses multiple kernel

learning-based one-class classifiers. Further, Section 2.6 describes kernel learning us-

ing privileged information for OCC, and the last section (Section 2.7) discusses online

learning-based one-class classifiers.

2.1 Preliminaries

This section provides preliminaries on OCC and kernel trick, which helps to un-

derstand further sections.
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2.1.1 Learning in the Absence of Counterexamples: One-class

Classification

As far as learning for OCC is concerned, it is broadly categorized in two ways [51,

6, 28]; (i) the data applied during learning, (ii) types of frameworks used to build the

model. For the first one, Khan and Madden [51] further categorized OCC into three

parts as follows:

(i) with positive samples only

(ii) with positive and small amount of negative samples only

(iii) with positive and unlabeled data

For the second one, Tax [6] further categorized OCC into three parts as follows:

(i) Density framework-based approach: It is a straightforward approach to

build a one-class classifier based on the density estimation of the training data.

It assumes that there is a low probability of the occurrence of target data in

the low-density area of the training set [6, 28]. Overall, It computes the density

based on some underlying distribution and set a threshold based on the estimated

density. If any sample lies outside of this threshold, then treat it as an outlier

sample; otherwise, the target sample.

(ii) Reconstruction framework-based approach: In this approach, the weight

of the trained model is adjusted according to target samples. This model has

learned to reconstruct itself on the output. As the model is trained for target

samples only, therefore, the reconstruction error will be less for target samples,

but when we pass any anomalous sample to the trained model, then it is obvious

that the reconstruction error will be more. Hence, we set some threshold, and if

that error is less than the threshold, then treat it as a target sample otherwise

as an outlier sample [6, 28].

(iii) Boundary framework-based approach: This approach needs only to de-

termine the boundary based on the structure of the dataset. Boundary-based
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methods do not rely on any specific distribution or density of the dataset because

they describe the boundary or domain of the target class, not the distribution

or density [6, 28]. If any sample lies outside of this boundary, then treat it as an

outlier sample; otherwise, the target sample.

2.1.2 Kernel Trick

Kernel trick is the core of kernel learning-based methods. It is simply based on

the inner product of samples into some new feature space φ(x). It is defined as

follows [52]:

Definition: We say that K(x, y) is a kernel function iff there is a feature map

such that for all x and y,

K(x, y) = φ(x).φ(y)

Here, a kernel function generates a matrix, which is called kernel or gram matrix.

This matrix needs to be symmetric and positive semi-definite. Any function can be

treated as kernel function iff it satisfies Mercer’s condition [52]. Mercer’s Theorem can

be defined as follows:

Mercer’s Theorem: A symmetric function K(x, y) can be expressed as an

inner product K(x, y) = φ(x).φ(y) for some Φ if and only if K(x, y) is positive

semidefinite.

We need to understand, what kernel trick basically does? It is not always possible

to separate the two classes from each other in the lower dimensional space using a

hyperplane. Hence, data is projected into the higher dimensional space so that a

hyperplane can easily separate it. This can be visualized in Figure 2.1. Figure 2.1(a)

represents data in low dimension space, and it can be seen that data is not linearly

separable. After adding one more dimension, i.e., Feature 3= (Feature 1)2, data can

be linearly separated by a hyperplane as shown in Figure 2.1(b).
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(b) Data is projected into higher dimensions
by creating a new dimension by taking the
square of Feature 1 as the third dimension

Figure 2.1: Visualization of data in lower and higher dimensions

2.2 Kernel Learning

Over the last decades, researchers have used kernel learning for different types of

classification tasks [53], such as binary, multi-class, and one-class classification. In

this thesis, we are focusing on the one-class classification problem. In 1999, Schölkopf

et al. [1] developed a kernel-based one-class classifier for novelty detection, and it

is popularly known as a one-class support vector machine (OCSVM). This method is

developed by taking the support vector machine (SVM) as a base classifier. Further, in

the same year, Tax and Duin developed another method for OCC task by again taking

SVM as a base classifier and popularly known as support vector domain description [31]

or support vector data description [3] (SVDD). The working methodology of both the

methods, OCSVM and SVDD, are different from each other. OCSVM constructs a

hyperplane, which separates all the target class data points from the origin in feature

space. It also maximizes the distance of this hyperplane from the origin. Instead

of a hyperplane approach like OCSVM, Tax and Duin [3] proposed a hypersphere-

based approach. They developed SVDD by finding a hypersphere, in feature space, of

minimum radius around the target class data such that it encloses almost all points

of the target class dataset. A diagram is depicted in Figure 2.2, which shows the
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difference between OCSVM and SVDD.
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Figure 2.2: Hyperplane of OCSVM and hypersphere of SVDD

Tax and Duin [6] widely studied SVDD and various other one-class classifiers. They

developed a toolbox for various one-class classifiers and named as data description

toolbox [54]. Data descriptor is another name of one-class classifier because it describes

the characteristics of the data and performs classification based on that. Both OCSVM

and SVDD are domain-based one-class classifiers. Since both the classifiers hardly use

any information from the statistics of the target data, they are insensitive to any

specific sampling or density of the target class. These methods describe the boundary

or structure or domain of the target class data points. They can be effective in the case

where the density distribution of the target class is not known. However, at the same

time, they are susceptible to the outliers in the training set. Hence, the appropriate

amount of samples from the target class must be available for training to describe the

domain of the target class.

There are several contributions made for OCSVM and SVDD in terms of theory

and application [28, 51]. In theory domain, Perkins et al. [55] extended OCSVM and

enabled it for handling temporal sequence. Yang et al. [56] and He et al. [57] developed

OCSVM for multi-task learning. Further, Xue and Beauseroy [58] enabled OCSVM for

multi-task learning with additional new features among similar tasks. Khan et al. [59]

developed a covariance-guided OCSVM. Perdisci et al. [60] constructed ensembles of
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OCSVM classifiers for payload-based anomaly detection systems. Hao [61] introduced

the fuzzy concept with OCSVM for novelty detection. In the application domain,

researchers have applied OCSVM for document classification [2], network intrusion

detection[62, 63] and seizures detection in patients [33]. Further, It is also applied

for novelty detection for audio data [64], text data [65], functional magnetic resonance

imaging data [32], medical data [65], multi-channel combustion data [66, 67], jet engine

health monitoring [68], etc. Similar to the above, SVDD is also extended theoretically

and employed in various applications. Density-based SVDD is developed by Lee et

al. [69, 70]. Wu and Ye [34] proposed small sphere and large margin approach-based

SVDD for novelty detection. Further, it is extended by Le et al. [71] by selecting

optimal sphere for two large margins approach-based SVDD. Xiao et al. [72] developed

multi-sphere support vector data description for outlier detection on multi-distribution

data. In [73] and [74], a fast and efficient SVDD is proposed to speed up the training

time of SVDD. SVDD is applied in various disciplines viz., classification of remote

sensing images [75], fabric defect detection [35], high-speed inline defect detection for

TFT-LCD array process [76], batch process monitoring [77], chillers fault detection

[78], novelty detection approach in machinery components [79] and outlier detection

with noise or uncertain data [80].

As discussed above, SVM-based one-class classifiers are widely applied in many

domains due to their performance. However, they are computationally expensive

because of their involvement in solving a quadratic optimization problem. This issue

is handled by introducing least-squares to SVM formulation and named as least squares

SVM (LSSVM) [81, 82, 36]. The idea of this least squares is directly linked to the

kernel ridge regression (KRR)[83]. Suykens et al. [81] introduced a bias term with

KRR and reformulated for SVM. Hence, LSSVM with zero bias is identical to KRR.

This can be seen from the formulation of LSSVM in (2.1), and KRR in (2.3) and

(2.4). There is one more popular method, extreme learning machine (ELM) [84], which

has reformulated its optimization problem for kernel [85] and leads to the identical

optimization problem as KRR [86]. Kernel formulation of ELM is referred to as

kernel extreme learning machine (KELM). We are providing a brief analysis on the
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optimization problem of LSSVM, KELM, and KRR in the following section so that

we can understand the difference between these methods.

2.2.1 Analysis of LSSVM, KELM, and KRR

Before mentioning the optimization problem, let us do some assumption regarding

variables. For a given training set {xi, ti}i=1,2,...,N , where xi denotes ith training sample

and yi denotes target output of ith sample, optimization problems of LSSVM, KELM,

and KRR are as follows.

Optimization problem of LSSVM:

Minimize
ω,ei

: £LSSVM =
1

2
‖ω‖2 +

C

2

N∑
i=1

‖ei‖22

Subject to : ωTφi + b = yi − ei, i = 1, 2, ..., N,

(2.1)

where ω is the weight coefficients (Just to differentiate from KRR/KELM, we use

the different notations of weight coefficient for SVM-based methods in throughout

the thesis.), φ(.) is the mapping in the feature space, ei denotes training error of ith

sample, and C is a regularization parameter.

Optimization problem of KELM:

Minimize
β,ei

: £KELM =
1

2
‖β‖2 +

C

2

N∑
i=1

‖ei‖22

Subject to : βTh(xi) = yi − ei, i = 1, 2, ..., N,

(2.2)

where β is the output weight (i.e., weight coefficients) and h(.) is the mapping in

KELM feature space. We have used same notation of weight coefficient and feature

mapping as used in most of the KELM papers [85, 86].
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Optimization problem of KRR can be represented in two ways as follows:

First way,

Minimize
β,ei

: £KRR−I =
1

2
‖β‖2 +

C

2

N∑
i=1

‖ei‖22

Subject to : βTφi = yi − ei, i = 1, 2, ..., N.

(2.3)

Second way,

Minimize
β,ei

: £KRR−II =
C

2
‖β‖2 +

1

2

N∑
i=1

‖ei‖22

Subject to : βTφi = yi − ei, i = 1, 2, ..., N.

(2.4)

Differences among the optimization problems of LSSVM, KELM, and

KRR:

(i) Difference between two formulations of KRR ((2.3) vs. (2.4)): In (2.3), C is

associated with the error term. In (2.4), C is associated with weight term. Here,

the parameter C controls a trade-off between low square loss and low norm of

the solution [87]. Hence, you can associate C with either weight or with the error

term. It does not change the solution.

(ii) KELM vs. KRR ((2.2) vs. (2.3)): KELM uses the notation of h(xi) for non-

linear feature mapping, and KRR uses the notation φi for the same. That is

the only difference between them. Optimization problem will not change just

due to the use of different notation for the same thing (i.e., h(xi) or φi or any

new variable for feature mapping). So, both KELM and KRR yield the same

solution. Hence, we conclude that both KELM and KRR are identical in every

aspect.

(iii) LSSVM vs. KRR ((2.1) vs. (2.3)): Both optimization problems are just differed

by a term ‘b’, which is added on the left side of the constraints of LSSVM in

(2.1). Here, we can obtain the formulation of KRR by simply substituting b = 0

in (2.1). Hence, it can be concluded that LSSVM with zero bias is equivalent to

KRR.
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Based on the above discussion, we reach the following conclusion:

KELM = KRR = LSSVM with zero bias

The proposed methods of this thesis are the variants of KRR, LSSVM(with

bias=0), and KELM. Since KRR is older and more generic name compared to LSSVM

and KELM, we use name KRR instead of LSSVM or KELM in this thesis for the exist-

ing and proposed methods. We have renamed the KELM-based method to KRR-based

for keeping the uniform naming convention throughout the thesis. We are providing

a brief survey of KRR-based work in the following paragraph.

KRR-based model [83] optimizes the problem rapidly in a non-iterative way by

solving a linear system. Therefore, the KRR-based model has received quite attention

by researchers in both the dimensions i.e. theory and application. In theory domain,

various types of methods have been developed, such as transductive regression [88],

multi-task regression [89], distributed KRR [90], randomized KRR [91], co-Trained

KRR [92], memory efficient KRR [93], KRR using sketching and preconditioning [94],

clustering using KRR [93], and random Fourier features for KRR [95]). It is also

employed for various types of applications, such as face recognition [96], face hallu-

cination [97], fMRI pattern prediction [98], wind speed prediction [99] and speech

recognition [100]. As discussed above, KRR is broadly applied in various types of

tasks viz; multi-class classification, prediction, and clustering. In recent years, it is

of immense interest for researchers to apply KRR for OCC, which is discussed in the

following section.

2.2.2 KRR-based One-class Classifiers

The KRR-based one-class classifiers can be divided into two categories, namely, (i)

without Graph-Embedding (ii) with Graph-Embedding.

(i) Without Graph-Embedding: For this, KRR-based single output node archi-

tecture is proposed by Leng et al. [7] for OCC and referred to as KOC in this

thesis. Leng et al. [7] have shown that it performs well compared to various
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state-of-the-art methods. Further, KOC is employed for gas turbine combustor

anomaly detection [9] and video anomaly detection [101].

Limitation: KOC does not consider structural information of the data in its

optimization problem, which is further discussed in Section 2.2.5.

Remedy: It can be addressed by employing the Graph-Embedding approach

with the optimization problem.

(ii) With Graph-Embedding: By addressing the limitation of KOC, Iosifidis et

al. [8] presented local and global variance-based Graph-Embedded one-class clas-

sifier (Graph-Embedding is discussed briefly in Section 2.4). Iosifidis et al. [8] em-

ployed two types of Laplacian graphs for OCC. Two types of Graph-Embedding

are local (i.e., Locally Linear Embedding and Laplacian Eigenmaps) and global

(i.e., linear discriminant analysis and clustering-based discriminant analysis)

variance embedding. Mygdalis et al. [102] employed Laplacian graph-based

one-class classifier for human action recognition. Later, global variance-based

Graph-Embedding has been extended to exploit class variance and sub-class

variance information for face verification task by Mygdalis et al. [17].

Limitation: Although, Graph-Embedding methods improved the representa-

tional power of KOC by adding structural information, however, its representa-

tion learning ability is still limited due to single-layered architecture.

Remedy: Representation learning [46, 43, 44, 45] can be introduced by convert-

ing single-layer to multi-layer architecture by stacking Auto-Encoders (Auto-

Encoder is briefly discussed in Section 2.3) before classification layer.

Since the proposed methods of this thesis are based on either OCSVM, SVDD,

or KOC, we provide a brief discussion of the formulations of these methods in the

subsequent Sections 2.2.3, 2.2.4, 2.2.5. We discuss Graph-Embedding-based methods

in Section 2.4.2 after the discussion about the basics of Graph-Embedding.
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2.2.3 One-class SVM: OCSVM

Scholkopf et al. [1] proposed one-class SVM (OCSVM) for extending the utility

offered by SVM to One-class classification. Given a set of training vectors xi ∈ Rn, i =

1, . . . , N , where all training vectors belong to the same class and termed as target class

data points. OCSVM constructs a hyperplane that separates all the target class data

points from the origin and maximizes the distance of this hyperplane from the origin.

It is formulated in the following optimization problem:

Minimize
ω,ξ,ρ

:
1

2
ωTω − ρ+

1

νN

N∑
i=1

ξi

Subject to : ωTφ(xi)≥ ρ− ξi i = 1, . . . , N

Subject to : ξi≥ 0, i = 1, . . . , N.

(2.5)

The dual of which can be written as

Minimize
α

:
1

2
αTKα

Subject to : 0 ≤ αi ≤ 1
νN

i = 1, . . . , N

Subject to :
N∑
i=1

αi= 1,

(2.6)

where kij = K(xi, xj) = φ(xi)
Tφ(xj)

In the above two equations, ω is the weight coefficients, φ(.) is the mapping in the

feature space, K is a kernel function, K is the kernel matrix where kij ∈K generates

an element of K between ith and jth sample, α is the Lagrange multiplier, N is the

total number of training samples provided, ν is a parameter that lets the user define

the fraction of target class points rejected, ρ is the bias term, and ξ = {ξi}, where

i = 1, 2, . . . , N , is the error with respect to the ith sample. The above minimization

problem results in a binary function, which returns +1 or −1 for target class and

outliers, respectively, and is called the decision function. The decision function f(x)

thus obtained is as follows:
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f(x) = sign(
N∑
i=1

αiK(xi, x)− ρ). (2.7)

Based on the formulation OCSVM, Das et al. [11] proposed anomaly detection for

more than one kernel, which is described in the next section.

2.2.4 Support Vector Data Description: SVDD

SVDD was proposed by Tax et al. [3] to make SVM compatible for One-class

classification task. We are providing an overview of SVDD and discusses its primal,

dual, and decision function formulation in this section. For a given set of training

samples xi ∈ Rn, i = 1, . . . , N , where all these samples belong to the same class (also

known as target class). SVDD constructs a spherical shape boundary that constructs

the compact sphere with no superfluous space using only target class samples. This

can be written as the following optimization problem [3]:

Minimize
R,a,ξ

: R2 + C
N∑
i=1

ξi

Subject to : ‖φ(xi)− a‖2 ≤ R2 + ξi i = 1, . . . , N

Subject to : ξi≥ 0, i = 1, . . . , N.

(2.8)

The dual of which can be written as

Maximize
α

:
N∑
i=1

αikii −αTKα

Subject to : 0 ≤ αi ≤ C i = 1, . . . , N

Subject to :
N∑
i=1

αi= 1,

(2.9)

where kij = K(xi, xj) = φ(xi)
Tφ(xj)

In the above two equations, φ(.) is a function, which is mapping data in the higher

dimensional feature space, K is the kernel matrix where kij ∈K generates an element
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of K between ith and jth sample, α is the Lagrange multiplier, N is the total number

of training samples provided, a is a center, and R is a radius of the hypersphere. Any

testing instance can be detected as a target or outlier based on a decision function

f(x). This function results in a binary function, which returns either +1 or −1. The

decision function f(x) can be defined as follows:

f(x) = sign(‖φ(x)− a‖2 −R2)

=

 −1, x is classified as target

1, x is classified as outlier.

(2.10)

Here, R2 is the distance between the center of sphere and any of the support vectors

on the boundary.

2.2.5 KRR-based One-class Classification Using Single Out-

put Node Architecture: KOC

As per the discussion in the previous section, Leng et al. [7] proposed a single

output node-based architecture for OCC. A schematic diagram of KOC is shown in

Figure 2.3. For KOC, let us assume the input training matrix of size N × n is X =

{xi}, where xi = [xi1, xi2, ..., xin], i = 1, 2, ..., N , is the n-dimensional input vector of

the ith training sample. The minimization function of KOC is as follows:

Minimize
β,ei

: £KOC =
1

2
‖β‖2 +

C

2

N∑
i=1

‖ei‖22

Subject to : (β)Tφi = r − ei, i = 1, 2, ..., N,

(2.11)

where C is a regularization parameter, β denotes weight vector, and r is a vector

having all elements equal to r. Here, r is any real number. Leng et al. [7] set

r at equal to 1. φ(.) denotes kernel feature mapping function, φi = φ(xi), and

Φ = Φ(X) = [φ1, φ2, ..., φN ]. E is an error vector where E = {ei} and i =

1, 2, ..., N . Here ei is a training error corresponding to ith training sample. By using

Representer Theorem [103], β is expressed as a linear combination of the training data
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Figure 2.3: A schematic diagram of KOC

representation Φ and reconstruction weight vector W :

β = ΦW . (2.12)

Hence, the minimization criterion in (2.11) is reformulated to the following:

Minimize : £KOC =
1

2
(W )T (Φ)TΦW +

C

2

N∑
i=1

‖ei‖22

Subject to : (W )T (Φ)Tφi = r − ei, i = 1, 2, ..., N.

(2.13)

Further, we substitute K=(Φ)TΦ, and ki = (Φ)Tφi (where the individual ele-

ments of ki equal to kij = (φi)
Tφj , j = 1, 2, . . . , N) in (2.13). Now, the optimization

problem in (2.13) is written as:

Minimize : £KOC =
1

2
(W )TKW +

C

2

N∑
i=1

‖ei‖22

Subject to : (W )Tki = r − ei, i = 1, 2, ..., N.

(2.14)
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The Lagrangian relaxation of (2.14) is given below:

£KOC =
1

2
(W )TKW +

C

2

N∑
i=1

‖ei‖22 −
N∑
i=1

αi((W )Tki − r + ei), (2.15)

where α = {αi}, i = 1, 2 . . . N , is a Lagrangian multiplier. In order to optimize

£KOC , we compute its derivatives as follows:

∂£KOC

∂W
= 0⇒W = α, (2.16)

∂£KOC

∂ei
= 0⇒ E =

1

C
α, (2.17)

∂£KOC

∂αi
= 0⇒ (W )TK = r−E. (2.18)

The matrix W is obtained by substituting (2.17) and (2.18) into (2.16), and is given

by:

W =

(
K + I

1

C

)−1
r, (2.19)

where I is an identity matrix. Further, β can be derived by substituting (2.19) in

(2.12):

β = Φ

(
K + I

1

C

)−1
r, (2.20)

where r is a vector having all elements equal to r. Since the value r can be arbitrary,

we set it equal to r = 1.

The predicted output for the training data can be calculated as follows:

Ô = (Φ)Tβ = (Φ)TΦW = K(W )T . (2.21)

where Ô =
{
Ôi

}
, and i = 1, 2, ..., N , is the predicted output of the training data.

After obtaining the predicted output value, we compute a threshold value based

on the predicted value at the output layer. This threshold value helps in deciding

whether a sample is an outlier or not. A threshold (θ1) is employed with KOC, which

is determined as follows:
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(i) We calculate the distance between the predicted value of the ith training sample

and r, and store in a vector, Λ = {Λi} and i = 1, 2, ..., N , as follows:

Λi =
∣∣∣Ôi − r

∣∣∣ . (2.22)

(ii) After storing all distances in Λ as per (2.22), we sort these distances in decreasing

order and denoted by a vector Λdec. Further, we reject a few percents of training

samples based on the deviation. Most deviated samples are rejected first because

they are most probably far from the distribution of the target data. The threshold

is decided based on these deviations as follows:

θ1 = Λdec(bν ∗Nc), (2.23)

where 0 < ν ≤ 1 is the fraction of rejection of training samples for deciding

threshold value. N is the number of training samples and b c denotes floor

operation.

After determining a threshold value by the above procedure, during testing, a test

vector xp is fed to the trained architecture and its output Ôp is obtained. Further,

compute the distance (Λ̂p), for xp, between the predicted value Ôp of the pth testing

sample and r:

Λ̂p =
∣∣∣Ôp − r

∣∣∣ . (2.24)

Finally, xp is classified based on the following rule:

If Λ̂p ≤ Threshold, xp belongs to normal class

Otherwise, xp is an outlier.
(2.25)

Overall, we have observed in Section 2.2 that multi-layer architecture with KRR is

not explored for the OCC task. In this thesis, we stack various types of Auto-Encoders

to construct a multi-layer architecture. Since we didn’t find any KRR-based Auto-

Encoder for OCC in the literature, we first proposed a KRR-based single-layered (i.e.,

single hidden layer) Auto-Encoder for OCC. After that, we develop a vanilla multi-

26



layered architecture for OCC. Later, we also develop a Graph-Embedded multi-layered

architecture for the OCC task.

2.3 Auto-Encoder

Auto-Encoder is one of the most explored architecture over the past decade

[46, 104]. Auto-Encoder is a type of generative model. It learns a latent representation

in an unsupervised manner from the input and uses this representation to reconstruct

input at the output layer [105]. Generally, the reconstructed image seems blurry due

to loss of information (see in Figure 2.4). Here, the main concern is how well the Auto-

Encoder represents data at the output layer. As it can be seen in Figure 2.5, when we

pass the noisy samples to the trained model of the Auto-Encoder, then it reconstructs

the correct pattern at the output layer without noise. It provides a better represen-

tation of the input data, which improves the classifier’s performance. It has been

employed for various types of tasks viz., compression / dimensionality reduction [106],

semi-supervised learning [107], representation and multi-task learning [108], pattern

generation [109], noise reduction [110], anomaly detection /OCC [30, 111, 112, 113],

information retrieval for texts [114] and images [115, 116], transfer learning [117],

and generating higher resolution images [118]. In this thesis, we are focusing on

non-iterative learning-based stacked Auto-Encoder for anomaly detection, which is

discussed in detail in the further chapters.
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Figure 2.4: A schematic diagram of Auto-Encoder during training
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Figure 2.5: A schematic diagram of Auto-Encoder during testing

2.4 Graph-Embedding

Generally, machine learning algorithms build a model based on the statistical in-

formation of the data. These algorithms are theoretically well-founded, and various

algorithms are available, which can handle statistical information efficiently, but we

cannot state the same about structural information. The traditional algorithm gen-

erally ignores it while building the model. Conversely, structural information has

well-representation power, which can be represented by using a graph [119]. However,

the problem is:

How to merge statistical information with structural information for any machine

learning algorithm?

This issue is addressed by developing a Graph-Embedding approach [120, 121].

Figure 2.6 provides a schematic diagram of Graph-Embedding. A graph can provide

an interesting representation of any real-world dataset [47, 121]. These Graphs capture

the graph topology and the relationship between the vertices and other properties of

the graph. Various applications are benefited from Graph analytics viz; link-prediction

[122], node classification [123], node recommendation [124], node clustering [125], etc.

Graph-Embedding methods preserve the structural property of the data in the em-

bedding space [47]. Various types of Laplacian graphs have been explored in Graph-

Embedding for preserving different types of structural information. Let us define an
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Figure 2.6: A schematic diagram of Graph-Embedding

undirected weighted graph G = {X,V }, where X = [x1, x2, . . . , xN ]T is a ma-

trix with a set of vertex, and V ∈ RN×N is the weight matrix expressing similarities

between the graph vertices.

Dii =
∑
j

Vij . (2.26)

The graph Laplacian matrix is computed as L = D − V , where D is a diago-

nal degree matrix. Laplacian matrix is a compressed representation of the data and

presented by an Adjacency matrix, which describes connections between nodes in the

graph [47, 121]. If the graph has |V | number of nodes, then the size of the adjacency

matrix will be |V | × |V |. A node is represented by a column and a row in this matrix.

If two nodes are connected in the graph, then the value between two nodes will be

non-zero in the matrix. It is illustrated in the following example using Figure 2.7:
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Figure 2.7: Example for representing Laplacian graph

D − V = L



2 0 0 0 0 0

0 3 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 1


−



0 1 0 0 1 0

1 0 1 0 1 0

0 1 0 1 0 0

0 0 1 0 1 1

1 1 0 1 0 0

0 0 0 1 0 0


=



2 −1 0 0 −1 0

−1 3 −1 0 −1 0

0 −1 2 −1 0 0

0 0 −1 3 −1 −1

−1 −1 0 −1 3 0

0 0 0 −1 0 1


. (2.27)

Entries of Laplacian graph (L) in (2.27) can be represented in the form of following

equation:

Lij =


− 1, if i = j

Dii , if i 6= j and vertices are adjacent

0, otherwise.

(2.28)

Various types of Laplacian graphs can be used for embedding. Few of them, which

are used in this thesis for the proposed methods, are discussed in the following sections.

2.4.1 Embedding using Laplacian Graph

For an undirected weighted graph G = {X,V }, suppose X is projected into

other dimension and termed as Y = [y1, y2, . . . , yN ]T . Consider a problem where

connected points on the graph stay as close as possible after embedding. We select

yi ∈ R to minimize
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∑
i,j

(yi− yj)2Vij, (2.29)

under appropriate constraint [126]. For any Y , we can rewrite (2.29) as follows:

1

2

∑
i,j

(yi− yj)2Vij = Y TLY , (2.30)

where L = D − V . Here, it is to be noted that from (2.26), V is symmetric and

Dii =
∑

j Vij. Now, we can derive R.H.S. of (2.30) as follows:

∑
i,j

(yi− yj)2Vij =
∑
i,j

(y2
i + y2

j − 2yiyj)Vij

=
∑
i

(
∑
j

Vij)y
2
i +

∑
j

(
∑
i

Vij)y
2
j − 2

∑
ij

yiyjVij

=
∑
i

y2
iDii +

∑
j

y2
jDjj − 2

∑
ij

yiyjVij

= 2Y T (D − V )Y

= 2Y TLY .

(2.31)

For the sake of mathematical convenience, we multiply by 1
2

to (2.29) and obtain

(2.30).

Now, we have understood about the formulation of Graph-Embedding using any

Laplacian graph. Different types of Laplacian graphs are briefly discussed below:

(i) Laplacian Eigenmap(LE): It is based on the idea of manifold unsupervised learn-

ing [126]. It preserves the similarities of the neighboring points [127] as shown

in Figure 2.8. It constructs a neighboring graph G = {X,V } as follows:

Vij =

vij, if xj ∈ Ni
0, otherwise,

(2.32)

where Ni denotes the neighborhood of xi. For computing similarity between xi

and xj , heat kernel function [126, 127] is employed as follows:
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Figure 2.8: Performance of Laplacian Eigenmap on Swiss Roll datasets

vij = exp

(
−
‖xi − xj‖22

2σ2

)
, (2.33)

where σ is a hyper-parameter scaling the squared Euclidean distance between

φhi and φhj .

(ii) Locally Linear Embedding (LLE): It also preserves the relationship between the

neighboring samples like LE (as shown in Figure 2.9), hence, it also constructs

a neighboring graph G = {X,V } using (2.32) . However, the determination of

the value of vij is different from LE. In LLE, each sample is reconstructed only

from its neighbors with two constraints:

(a) vij = 1 if xi ∈ Ni, otherwise, 0.

(b) The rows of weight matrix sum to one, i.e.,
∑

j vij = 1.

Further, optimal weight vij with these constraints is determined by minimizing

reconstruction error as follows [128]:

Minimize∑
j∈Ni

vij=1

∑
i

∥∥∥∥∥xi −∑
j∈Ni

vijxj

∥∥∥∥∥
2

. (2.34)
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Figure 2.9: Performance of Locally Linear Embedding on Swiss Roll dataset

(iii) Linear Discriminant Analysis (LDA): The structure of the LDA [129] graph is

determined by using the class information of the training data X as follows:

Vij =

 1
Nci
, if cj = ci

0, otherwise.
(2.35)

Here, ci denotes the class label of ith sample xi. LDA has to achieve two following

objectives [129]:

(a) Maximize between-class variance.

(b) Minimize within-class variance if class samples are close, and it does not care

if they are far away.

For understanding the concept of class variance, we are taking two different types

of datasets viz; unimodal and multi-modal datasets. For the unimodal dataset,

principal component analysis (PCA) is employed on this data to understand the

effect of maximum variance. PCA will project the data on the black line in Figure

2.10(a) because PCA chooses the direction of maximum variance and considers

lower variance as a noise. However, projection on this line will lead to a strong

overlap of Class1 and Class2 while LDA takes into account of the class labels

and leads to a projection on the horizontal line (see in Figure 2.10(b)), which
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Figure 2.10: Projection line for PCA and LDA on unimodal dataset
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Figure 2.11: Projection line for LDA and LFDA on multi-modal dataset
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provides better class separation compared to PCA. Therefore, LDA minimizes

the intra-class variance but maximizes the inter-class variance. Now, consider if

multi-modality is present in the data, then LDA does not work properly, as shown

in Figure 2.11(a) because it tries to minimize the intra-class variance without

considering the multi-modality of that class. To handle this issue, local Fisher

discriminant analysis (LFDA) [130] is proposed for the multi-modal dataset as

shown in Figure 2.11(b). Graph weights are defined by LFDA as follows:

Vij =


vij
Nci
, if cj = ci

0, otherwise.
(2.36)

In the above discussion, LE and LLE types of embedding do not depend on the

class label. Therefore, both can be easily employed for OCC. However, how will

we employ LDA and LFDA for OCC since these embeddings need class labels

along with data? LDA and LFDA do not provide effective embedding if all data

belongs to the same class, and it can be understood by the (2.35) and (2.36).

For addressing this issue, a clustering method is employed with LDA [131]. Gen-

erated clusters are treated as subclasses of the target class. Now, information is

available for more than one class, and LDA can be employed effectively. Hence,

clustering with LDA is performed, and it is termed as CDA [131]. In the case

of LFDA, if you consider that all data belongs to the same class, then it will be

equivalent to LE (LE has been discussed above in this section), and the same

can be analyzed from (2.32) and (2.36).

2.4.2 Graph-Embedding with KOC: GKOC

In this subsection, we are providing an optimization problem for Graph-Embedded

KOC. Two types of Embeddings are explored in the literature for OCC:

(i) Local variance information-based Graph-Embedding with KOC (GKOC) [8]: It

minimizes the variance by preserving the local geometry of the data after embed-

ding [132]. Iosifidis et al. [8] have used two Laplacian graphs, like LE and LLE,
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for embedding. By using these two graphs, two variants have been generated

and named as GKOC-LE [8] and GKOC-LLE [8].

(ii) Global variance information-based embedding with KOC (GKOC) [8]: It mini-

mizes the variance by preserving the global structure of the data after embed-

ding [132]. Laplacian graphs like LDA and CDA have been used with GKOC,

and two variants have been generated as GKOC-LDA [8] and GKOC-CDA [8].

The optimization problem of Graph-Embedding method can be commonly written

for all three types of embedding as follows:

Minimize
β,ei

: £GKOC =
1

2
(β)T (S + λI)β +

C

2

N∑
i=1

‖ei‖22

Subject to : (β)Tφi = r − ei, i = 1, 2, ..., N.

(2.37)

Here, the scatter matrix S encodes the local/global variance information, and can

be represented as:

S = ΦL(Φ)T , (2.38)

where L represents the Laplacian matrix for any Graph-embedding. Above minimiza-

tion problem can be solved similar as discussed in Section 2.2.5.

β = Φ

(
K +

1

C
LK +

λ

C
I

)−1
r. (2.39)

At last, the decision process for a test vector, whether it is outlier or not, is also

same as discussed in Section 2.2.5.

2.5 Multiple Kernel Learning

The general idea of kernel-based methods such as SVM is to project the input space

to a higher dimension where they become linearly separable. Kernel-based methods

have received considerable attention over the last decade due to their success in clas-

sification problems. An advance in kernel-based methods for classification problems

is to use many different kernels or different parameterization of kernels instead of a
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single fixed kernel [133] to get better performance. This method is named as multiple

kernel learning (MKL) and it is shown in Figure 2.12.

Multiple kernel learning provides two advantages. Firstly, this provides flexibility

to select for an optimal kernel or parameterizations of kernels from a larger set of

kernels, thus reducing bias due to kernel selection and at the same time allowing for a

more automated approach [48, 134, 135]. Secondly, multiple kernels are also reflective

of the need to combine knowledge from different data sources (such as images and

sound in video data). Thus they accommodate the different notions of similarity in

the different features of the input space. A further advance in multiple kernel learning

is to localize the kernel selection process for various tasks, like binary classification [12],

image recognition problems [136], regression [137], and clustering [138]. Gonen and

Alpaydin [12, 136, 137] achieve this localization by using a gating function, which

helps in the selection of the appropriate kernel locally. This method is known as

localized multiple kernel learning (LMKL). Various extensions of LMKL method have

been developed [139, 140, 141, 142]. Han et al. [139] developed Lp norm LMKL

via semi-definite programming. Further, Han et al. [140] formulated it via sample-

wise alternating optimization. Lei et al. [141] formulated it as a convex optimization

problem over a given cluster structure. Han et al. [142] developed it with dynamical

clustering and matrix regularization. During the last decade, there are few attempts

by researchers [11, 143, 144] to transfer the idea of multiple kernel learning to the
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Figure 2.12: A schematic diagram of multi-kernel learning. In this diagram, k1, k2,
and k3 represent different kernels. K represents combination of kernels.
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domain of OCC. GöNen and Alpaydin [12] also mentioned in future directions of their

work that we can develop it for OCC. Das et al. [11] propose a simple weighted sum

of two kernels, each of which describes the discrete and continuous streams in aviation

data, respectively. This method is named as Multiple Kernel Learning for Anomaly

Detection (MKAD) and briefly discussed in the following section.

2.5.1 Multiple Kernel Learning for Anomaly Detection:

MKAD

Das et al. [11] proposed MKAD to detect anomalies in aviation data. Aviation

data consists of features that can be grouped into two categories - (i) Real-valued data

such as flight velocity, altitude, and flap angle, and (ii) Binary valued data such as

cockpit switch positions. Single-kernel OCSVM cannot capture the different notions

of similarity in the Real and Binary valued data. Instead, a composite kernel K is

used as follows:

K(xi, xj) =

p∑
m=1

ηmkm(xi, xj), (2.40)

where ηm ≥ 0 and
∑p

m=1 ηm = 1. Here km(xi, xj) represents the mth kernel computed

for data points xi and xj , and ηm denotes assigned weight to individual kernels. The

dual of this optimization problem is similar to that of OCSVM, with the kernel replaced

by the composite kernel.

Note that here, the advantage of the multiple kernel learning approach is to incor-

porate knowledge of the differing notions of similarity in the decision process. Thus,

we can achieve an improvement in detecting anomalies in a system that involves var-

ious data sources. A fixed combination rule (like a weighted summation or product)

assigns the same weight to a kernel, which remains fixed over the entire input space.

However, this does not take into account the underlying localities in the data. As-

signing different weights to a kernel in a data-dependent way may lead to a further

improvement in detecting the anomalies. We explore this possibility in this thesis.
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As per our findings in Section 2.5, the method proposed by Das et al. [11] took

advantage of multiple kernel learning to incorporate the different notions of similarity

for the anomaly detection task in a heterogeneous system. This method exhibited

better performance compared to single kernel learning. Although the method proposed

by Das et al. [11] took advantage of the multi-kernel learning for OCC, they combined

the kernel using only fixed combination rule, i.e., assigning equal weight to each kernel

over the whole input space. In this thesis, the MKL-based proposed methods decide

the weight of each kernel based on the locality presents among data. Overall, by

taking the clue from these papers [145, 12, 146], we have extended the concept of

localized multiple kernel learning for both the SVM-based OCC methods (OCSVM

and SVDD).

2.6 Learning with Privileged Information

As we have discussed in the previous sections that SVM-based one-class classifiers

are broadly based on two different types of methods viz., OCSVM [1] and SVDD [31].

These methods have been further enabled to utilize the privileged information during

learning by using a well-known framework, i.e., learning using privileged information

(LUPI) framework [147, 13]. This framework is inspired by the way human learns in

the real-world. In the real-world, human learns not just by looking at an object but

also learns by listening to extra information provided by someone like student-teacher

learning. A teacher plays a very crucial role in human learning. LUPI framework

introduces human teaching into traditional machine learning. An intelligent teacher

provides some explanation along with an example to the student. This additional infor-

mation is known as privileged or side information. In this framework, some additional

information X∗ is available corresponding to a dataset X at the training/learning

stage [13]. However, this information is not available at the testing stage. We can

understand this from the following practical examples [13]:

(i) Suppose we have to build a model to classify biopsy images into two categories:

cancer and non-cancer. Here, the model classifies based on the pixel information
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of the image; however, additional information can be provided along with the

image [13]. This additional information can be a description of the image, which

is written by a pathologist. This description provides additional information, i.e.,

a description of the pictures using a high-level holistic language. However, this

additional information will not be available at the test stage because our goal is

to build a model to provide an accurate diagnosis without consulting a pathol-

ogist [13]. The traditional and LUPI setting are shown in Figures 2.13(a) and

2.13(b), respectively. These figures also show the difference between traditional

machine learning and LUPI setting.

(ii) Suppose that we have to build a model, which can predict the outcomes of

treatment in a year based on the current symptoms (X) of disease. However,

we can provide additional information (X∗) about the development of symptoms

in 3, 6, and 9 months. This additional information can improve the prediction;

however, this information will not be available at the testing stage.

(iii) Vapnik and Vashisht [13] provided an interesting example on MNIST dataset by

taking digit 5 and 8. Some sample images of 5 and 8 are provided in Figure

2.14. They generated the holistic (poetic) description of the image and treated

it as privileged information. The poetic description can be understood by the

following examples, which were originally provided by Vapnik and Vashist [13].

Example-1: For digit 5 [13]

Not absolute two-part creature. Looks more like one impulse. As for

two-partness the head is a sharp tool and the bottom is round and

flexible. As for tools it is a man with a spear ready to throw it. Or

a man is shooting an arrow. He is firing the bazooka. He swung his

arm, he drew back his arm and is ready to strike. He is running. He

is flying. He is looking ahead. He is swift. He is throwing a spear

ahead. He is dangerous. It is slanted to the right. Good snaked-

ness. The snake is attacking. It is going to jump and bite. It is
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Figure 2.13: Setting of traditional classification and LUPI-based classification
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free and absolutely open to anything. It shows itself, no kidding. Its

bottom only slightly (one point!) is on earth. He is a sportsman and

in the process of training. The straight arrow and the smooth flexible

body. This creature is contradictory - angular part and slightly roundish

part. The lashing whip (the rope with a handle). A toe with a handle.

It is an outside creature, not inside. Everything is finite and open.

Two open pockets, two available holes, two containers. A piece of rope

with a handle. Rather thick. No loops, no saltire. No hill at all.

Asymmetrical. No curlings.

Example-2: For digit 8 [13]

Two-part creature. Not very perfect infinite way. It has a deadlock, a

blind alley. There is a small right-hand head appendix, a small shoot.

The right-hand appendix. Two parts. A bit disproportionate. Almost

equal. The upper one should be a bit smaller. The starboard list is quite

right. It is normal like it should be. The lower part is not very steady.

This creature has a big head and too small bottom for this head. It is

nice in general but not very self-assured. A rope with two loops which

do not meet well. There is a small upper right-hand tail. It does not

look very neat. The rope is rather good - not very old, not very thin,

not very thick. It is rather like it should be. The sleeping snake which

did not hide the end of its tail. The rings are not very round - oblong -

rather thin oblong. It is calm. Standing. Criss-cross. The criss-cross

upper angle is rather sharp. Two criss-cross angles are equal. If a

Figure 2.14: Sample images of digit 5 and 8
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tool it is a lasso. Closed absolutely. Not quite symmetrical (due to the

horn).

Here, Vapnik and Vashist [13] have passed this description with the MNIST

images during training. They have shown a significant improvement in the per-

formance of the classifier after adding this information as privileged information.

The whole purpose of LUPI framework is to explore the privileged information

to improve the performance of the classifier. Further, Vapnik and Izmailov [14] im-

prove the speed of student’s learning using privileged information by correction of

student’s concepts of similarity between examples, and direct teacher-student knowl-

edge transfer. Moreover, this concept has been explored for various types of tasks

viz., data clustering [148], face verification [149], visual recognition [150], malware

detection [39], multi-label classification [151], deep learning [152], and classification of

low-resolution images [153].

In recent years, researchers employed the LUPI framework for OCC task. Zhu and

Zhong [37] combined the LUPI framework with OCSVM and named as OCSVM+,

and Zhang [38] combined the LUPI framework with SVDD and named as SVDD+.

Further, Burnaev and Smolyakov [39] modified the formulation of OCSVM+ and

SVDD+ by adding a regularization factor on the privileged feature space. OCSVM+

and SVDD+ exhibited significant improvement over tradition OCSVM and SVDD.

Formulations of OCSVM+ and SVDD+ are briefly mentioned below:

2.6.1 LUPI framework with OCSVM: OCSVM+

Let us assume the input training matrix of size N is X = {xi}, where xi =

[xi1, xi2, ..., xin], i = 1, 2, ..., N , is the n-dimensional input vector of the ith training

sample. We assume that privileged information X∗ = {x∗
i}, where i = 1, 2, ..., N ,

is available with feature space of X as (xi, x
∗
i ) during training. The minimization

function of OCSVM+ is as follows [37]:
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Minimize
ω,ξ,ρ,ω∗,b∗

:
νN

2
‖ω‖22 +

µ

2
‖ω∗‖2 − νNρ+

N∑
i=1

[(ω∗.φ∗(x∗
i )) + b∗ + ξi]

Subject to : (ω.φ(xi)) ≥ ρ− (ω∗.φ∗(x∗
i ))− b∗, i = 1, . . . , N

Subject to : (ω∗.φ∗(x∗
i )) + b∗ + ξi ≥ 0, i = 1, . . . , N

Subject to : ξi ≥ 0, i = 1, . . . , N,

(2.41)

where ω denotes weight matrix, and ω∗ is a correction weight. φ(.) denotes kernel

feature mapping function, and φ∗(.) is a feature mapping in the privileged space. µ is

a regularization parameter, ν is a fraction of rejection, and ξi is a slack variable for

the ith pattern. ρ and b∗ are the bias terms.

2.6.2 LUPI framework with SVDD: SVDD+

Similar as OCSVM+, Zhang [38] developed LUPI framework for SVDD as follows:

Minimize
ξ,ω∗,b∗,a,R

: νNR +
µ

2
‖ω∗‖2 +

N∑
i=1

[(ω∗.φ∗(x∗
i )) + b∗ + ξi]

Subject to : ‖φ(xi)− a‖2 ≤ R + [(ω.φ∗(x∗
i )) + b∗], i = 1, . . . , N

Subject to : (ω∗.φ∗(x∗
i )) + b∗ + ξi ≥ 0, i = 1, . . . , N

Subject to : ξi ≥ 0, i = 1, . . . , N,

(2.42)

where a is a center, and R is a radius of the hypersphere.

Overall, we have observed in Section 2.6 that only iterative learning-based ker-

nelized one-class classifiers are developed for the LUPI framework. These methods

consume more time in training the model due to the iterative nature of learning.

Therefore, we develop non-iterative learning-based one-class classifiers to utilize priv-

ilege information during training.
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2.7 Online Learning

The literature reviewed till now is based on offline learning (i.e., batch learning).

In offline learning, whole data is available for training. Therefore, whole data can be

processed at once. Conversely, in a real-world scenario, data comes as a sequence of

chunks. In these days, data is generating continuously, and their characteristics also

change as time passes. These data are non-stationary. Generally, traditional machine

learning techniques are compatible with stationary data but can not handle these

types of data. For handling such types of data, researchers [15] enabled traditional

algorithms for online learning, which can handle non-stationary and streaming data.

Online learning has attracted researchers in recent years due to its capability to handle

a high volume of streaming data with less computational and storage costs [154, 15,

155]. There are various techniques involve in online OCC, and the complete workflow

for online OCC in a non-stationary environment is depicted in Figure 2.15. These

techniques can be broadly divided into two steps [15]:

(i) Change detection: First, we need to identify whether data distribution is

changed or not. If changes occur, then the model needs to be updated. Change

Online One-class Learning in
a Non-Stationary Environment

Change Detection

Constant
Update

Detect and
Retrain

Model Update

Model Selection

Fixed
Parameters

Optimized
Parameters

Model Construction

Batch

Fixed Sliding
Window

Weighted Sliding
Window

Incremental

Figure 2.15: Complete work-flow for online OCC in a non-stationary environment
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detection techniques can be categorized into two parts:

(a) Constant update: In this way of detection, we presume that data distri-

bution is changing at a regular interval, and therefore, the model also needs

to update at the regular interval. It reduces the overhead of change detec-

tion. However, if the model update time interval is lesser than the time

interval of change in the non-stationary distribution, then the model needs

to be updated unnecessarily, which also increases computational complex-

ity. On the other hand, if the model update time interval is greater than

the time interval of change in the non-stationary distribution, then anomaly

detection ability of the classifier reduces. Zhang et al. [156, 157] provided a

constant update algorithm for adapting the change in the data distribution.

They have implemented their algorithm by using a sliding window.

(b) Detect and Retrain: This technique overcomes the issue of constant

update method and updates the model only when it is required. Therefore,

it reduces the computational complexity of online classifier. In addition to

the constant update, Zhang et al. [156, 157] also provided an algorithm for

detecting the change in the distribution.

(ii) Model update: After detection the change, it has to decide whether the model

needs to be updated or not. This process can be categorized into two parts:

model selection and model construction.

In model selection, the goal is to select a model (which is built on the current

training set), which can perform well on the testing set. It can be further cate-

gorized into two parts as follows [15]:

(a) Fixed parameters: In this technique, the parameter is tuned and selected

only once before deployment. Once the model is deployed, then the selected

parameter does not change irrespective of the change in the data distribu-

tion. This technique requires low computational complexity as there is no

need to select an optimal parameter for the new training set. Rajasegarar
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et al. [158] applied fixed-parameter technique in their work for anomaly de-

tection using OCSVM. There is one drawback in this technique that we are

not selecting the optimal parameter once the model is deployed. It means

that only one model is constructed for every new training set, which might

lead to the degradation of the performance of an online classifier.

(b) Optimized parameters: This technique resolves the issue of fixed pa-

rameters technique by selecting the optimal model from the set of models.

The set of models is constructed by using different values of parameters and

selects the optimal parameter to construct the optimal model. Ratsch et

al. [159] employed a heuristic approach to select the optimal parameter for

OCSVM. Chatzigiannakis et al. [160] developed a kernel principal compo-

nent analysis (KPCA) 1 based online learning for anomaly detection, which

also selects the optimal model among various constructed models.

After model selection, the next part is model construction, which can be catego-

rized into two parts [15]:

(a) Batch learning: This learning mode simply discards old training samples

and reconstructs the new model from scratch for the current training set.

There are two ways of learning, either by using a fixed sliding window or

weighted sliding window. The fixed sliding window can be employed in two

ways; either fix the size of the sliding window, or samples from the current

window should be valid for a fixed period. Xie et al. [161] proposed a fixed

sliding window approach for anomaly detection. It is a simple but effective

technique for those cases where training data is valid for a fixed period. Any

classifier which assumes that data comes from stationary distribution can be

employed for the non-stationary data by using this sliding window approach.

In a weighted sliding window approach, more weight is assigned to the newly

arrived samples. We can assign different weights to the different part of the

sliding window based on some predefined rule. Overall, this learning mode

1Hoffmann [4] developed a KPCA-based offline learning approach for novelty detection.
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is simple but computationally expensive.

(b) Incremental learning: Construction of the model by using this learning

can be accomplished into two steps. In the first step, at time t, the previous

model, model(t−1), is updated by forgetting certain obsolete or old samples.

In the second step, the new model, model(t), is constructed by using the

model available after the first step (i.e., model(t−1)) and the newly arrived

samples at time t. This way of learning reduces the computational cost of

model construction by reusing the old model. A framework for incremental

learning is discussed in detail by Subramaniam et al. [162].

Similar to offline learning, most of the kernel-based online one-class classifiers con-

sidered SVM as a base classifier [154, 15, 155]. SVM based online one-class classifier

(i.e., incremental SVDD (incSVDD)) has been developed by Tax and Laskov [40]

for online learning. Further, researchers employed it for change detection [41], out-

lier detection in wireless sensor network [163], malware detection in cloud computing

infrastructures [164], multiple human tracking [165] and structural health monitor-

ing [42].

In the discussed literature of Section 2.7, SVM is primarily considered as a base

classifier for online OCC, and it uses the iterative approach of learning. The iterative

approach is very time consuming, and it is a primary concern for online learning as

we need to update the model as soon as new samples arrive. In this thesis, we address

this issue by developing KRR-based online one-class classifiers. Since KRR uses a non-

iterative approach to learning, it consumes very less time and speeds up the training

process.

2.8 Performance Criteria

For evaluating the performance of the one-class classifiers, generally, researchers [2,

8] use Geometric mean2 (ηg) or F1-scores (ηF1) as a performance measure. Both mea-

2It is also known as Gmean
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sures consider Precision (ηpr) and Recall (ηre) with equal weightage in its formulation

as follows:

ηg =
√

Precision ∗ Recall (2.43)

ηF1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(2.44)

where

ηpr =
True Positive

True Positive + False Positive

ηre =
True Positive

True Positive + False Negative

(2.45)

We consider ηg as the first performance measure in the whole thesis. Since we have

to compare multiple classifiers on various datasets, we compute mean of all Gmean

(ηm) and Friedman Rank (ηf ) [166] over all datasets by taking inspiration from this

paper [167]. We consider ηf as a final performance measure to rank all the classifiers

as per their performance. Moreover, Friedman testing [166] is also performed to

verify the statistical significance of the obtained results. Both performance measures

ηm and ηf are computed as shown in the following example:

Example:

For computing ηm and ηf , we take a demo data in Table 2.1. Suppose, this table

contains ηg values for 4 models (classifiers) corresponding 14 datasets. We compute

Friedman rank by using following two steps:

(i) It ranks the algorithms for each dataset separately, the best performing algorithm

getting the rank of 1, the second best rank 2, and so on. The same has been

shown in Tables 2.1, 2.2.

(ii) In case of ties (like in Dataset6, Dataset8, Dataset10, Dataset11, and Dataset13),

average ranks are assigned.
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(iii) Further, we compute average rank of each model over all datasets. This average

rank is treated as Friedman rank for each model.

Table 2.1: Demo data for computing ηm and ηf . Each value in table is treated as ηg

Model1 Model2 Model3 Model4

Dataset1 76.30 76.80 77.10 79.80

Dataset2 59.90 59.10 59.00 56.90

Dataset3 95.40 97.10 96.80 96.70

Dataset4 62.80 66.10 65.40 65.70

Dataset5 88.20 88.80 88.60 89.80

Dataset6 93.60 93.10 91.60 93.10

Dataset7 66.10 66.80 60.90 68.50

Dataset8 58.30 58.30 56.30 62.50

Dataset9 77.50 83.80 86.60 87.50

Dataset10 100.00 100.00 100.00 100.00

Dataset11 94.00 96.20 96.50 96.20

Dataset12 61.90 66.60 61.40 66.90

Dataset13 97.20 98.10 97.50 97.50

Dataset14 95.70 97.80 94.60 97.00

Mean of ηg (ηm) 80.49 82.04 80.88 82.72

By employing the above 3 steps on the demo data available in Table 2.1, we

compute ηf as mentioned in Table 2.2. After computing ηf and ηm values of all

models, we present them in increasing order of ηf in Table 2.3. Model4 emerges as

the best classifier among all four models. In the whole thesis, we compute ηg, ηm and

ηf values by using the above-discussed procedure.
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Table 2.2: Ranking each model corresponding to each datasets for computing the ηf

Model1 Model2 Model3 Model4

Dataset1 4 3 2 1

Dataset2 1 2 3 4

Dataset3 4 1 2 3

Dataset4 4 1 3 2

Dataset5 4 2 3 1

Dataset6 1 2.5 4 2.5

Dataset7 3 2 4 1

Dataset8 2.5 2.5 4 1

Dataset9 4 3 2 1

Dataset10 2.5 2.5 2.5 2.5

Dataset11 4 2.5 1 2.5

Dataset12 3 2 4 1

Dataset13 4 1 2.5 2.5

Dataset14 3 1 4 2

Friedman Rank
(ηf )

3.1 2.0 2.9 1.9

Table 2.3: ηf and ηm values of all models in increasing order of ηf

ηf ηg

Model4 1.93 82.72

Model2 2.00 82.04

Model3 2.93 80.88

Model1 3.14 80.49
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Chapter 3

Kernel Ridge Regression-based

Auto-Encoder for One-class Classification

In this chapter, we present a reconstruction framework-based method for OCC,

which is named as KRR-based Auto-Encoder for OCC (AEKOC). This proposed work

is inspired by a boundary framework-based one-class classifier [7], which was also

developed by taking KRR as a base classifier. The boundary framework-based method

only learns from the structure of the data; however, it does not use representation

learning in its framework [46, 44]. We merge the concept of representation learning

with kernel learning and propose a method AEKOC for OCC. AEKOC represents the

target data in a better way by minimizing the noise effect in the data, which can lead

to a better classification model. The proposed and existing state-of-the-art methods

are experimented on 23 datasets, and their performance is evaluated based on various

performance metrics, which are discussed in Section 2.8 of Chapter 2. The details of

the proposed method are discussed next.

3.1 KRR-based Auto-Encoder for One-class Clas-

sification:AEKOC

The proposed AEKOC is a reconstruction framework-based method. It is a kernel-

based Auto-Encoder, which consists of a single hidden layer. It follows least-squares
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method [83, 168] for learning. The training of AEKOC is performed by reconstructing

the input to the output layer, and it is depicted in Figure 3.1. Since the reconstruction

framework-based methods are not primarily developed for a one-class classifier [6], a

threshold is set empirically using reconstruction error using training data. A threshold

is set in such a way so that if the error is more than this threshold, then that data

is treated as an outlier otherwise target data. This procedure works because the

obtained model after training on the target data will not be suitable for outlier data.

Therefore, reconstruction error for outlier data will be higher compared to target data.

Here, we propose a KRR-based Auto-Encoder with a single hidden layer for OCC. In

the following section, firstly, some notations are introduced for formulating AEKOC;

then, the formulation of the proposed method is described.
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Figure 3.1: A schematic diagram of AEKOC

3.1.1 Formulation of the Proposed Method AEKOC

In this section, some notations are introduced, which are used throughout this

thesis. Let us assume the input training matrix of size N × n is X = {xi}, where

xi = [xi1, xi2, ..., xin], i = 1, 2, ..., N , is the n-dimensional input vector of the ith

training sample. AEKOC minimizes the following criterion, which involves a non-
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linear1 feature mapping X → Φ:

Minimize
βa,ei

: £AEKOC =
1

2
‖βa‖2F +

C

2

N∑
i=1

‖ei‖22

Subject to : (βa)
Tφi = (xi)

T − (ei)
T , i = 1, 2, ..., N,

(3.1)

where C is a regularization parameter and βa denotes weight matrix. E is an error

matrix where E = {ei}, for i = 1, 2, ..., N . ‖.‖F and ‖.‖2 denotes the Frobenius norm

and l2−norm, respectively. φ(.) denotes kernel feature mapping function, φi = φ(xi),

and Φ = Φ(X) = [φ1, φ2, ..., φN ]. ei is a training error vector corresponding to the

ith training sample. Based on the Representer Theorem [103], we express βa as a

linear combination of the training data representation Φ and a reconstruction weight

matrix Wa:

βa = ΦWa. (3.2)

Hence, by using Representer Theorem [103], minimization problem in (3.1) is refor-

mulated as follows:

Minimize
Wa,ei

: £AEKOC =
1

2
Tr
(
(Wa)

T (Φ)TΦWa

)
+
C

2

N∑
i=1

‖ei‖22

Subject to : (Wa)
T (Φ)Tφi = (xi)

T − (ei)
T , i = 1, 2, ..., N.

(3.3)

Here, ’Tr’ represents trace of a matrix. Further, we substituteK=(Φ)TΦ, and ki =

(Φ)Tφi (where the individual elements of ki equal to kij = (φi)
Tφj , j = 1, 2, . . . , N)

in (3.3). Now, the optimization problem in (3.3) is written as:

Minimize
Wa,ei

: £AEKOC =
1

2
Tr
(
(Wa)

TKWa

)
+
C

2

N∑
i=1

‖ei‖22

Subject to : (Wa)
Tki = (xi)

T − (ei)
T , i = 1, 2, ..., N.

(3.4)

1Linear case can be easily derived from (3.1) by substituting φi→ xi
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The Lagrangian relaxation of (3.4) is written as follows:

£AEKOC =
1

2
Tr
(
(Wa)

TKWa

)
+
C

2

N∑
i=1

‖ei‖22 −
N∑
i=1

αi((Wa)
Tki− (xi)

T + (ei)
T ),

(3.5)

where α = {αi}, i = 1, 2 . . . N , is a Lagrangian multiplier. In order to optimize

£AEKOC , we compute its derivatives as follows:

∂£AEKOC

∂Wa

= 0⇒Wa = α, (3.6)

∂£AEKOC

∂ei
= 0⇒ E =

1

C
α, (3.7)

∂£AEKOC

∂αi
= 0⇒ (Wa)

TK = XT −ET . (3.8)

The matrix Wa is obtained by substituting (3.7) and (3.8) into (3.6), and is given by:

Wa =

(
K + I

1

C

)−1
X. (3.9)

Now, βa is derived by substituting (3.9) into (3.2):

βa = Φ

(
K + I

1

C

)−1
X. (3.10)

The predicted output for the training data is calculated as follows::

Ôa = (Φ)Tβa = (Φ)TΦWa = KWa, (3.11)

where Ôa is the predicted output matrix of the training data and Ôa = {x̂i}, where

x̂i = [x̂i1, x̂i2, ..., x̂in], i = 1, 2, ..., N .

After obtaining the predicted output value, we compute a threshold value based

on the predicted value at the output layer. This threshold value helps in deciding

whether a sample is an outlier or not. It is discussed in the following section.
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3.1.2 Decision Function

A threshold (θ1) is employed with the proposed method at the output layer, which

is determined as follows:

(i) We calculate the sum of square error as reconstruction error between the pre-

dicted value of the ith training sample and xi, and store the distance in a vector,

Λ = {Λi} and i = 1, 2, ..., N , as follows:

Λi =
n∑
j=1

((̂Oa)ij − xij)
2. (3.12)

(ii) After storing all distances in Λ as per (3.12), we sort these distances in decreasing

order and denoted by a vector Λdec. Further, we reject a few percents of training

samples based on the deviation. Most deviated samples are rejected first because

they are most probably far from the distribution of the target data. The threshold

is decided based on these deviations as follows:

θ1 = Λdec(bν ∗Nc), (3.13)

where 0 < ν ≤ 1 is the fraction of rejection of training samples for deciding

threshold value. N is the number of training samples and b c denotes floor

operation.

After determining a threshold value by the above procedure, during testing, a test

vector xp is fed to the trained architecture and its output ̂(Oa)p is obtained. Further,

compute the distance (Λ̂p), for xp, between the predicted value ̂(Oa)p of the pth testing

sample and xp:

Λ̂p =
n∑
j=1

((̂Oa)pj − xpj)
2. (3.14)

Finally, xp is classified based on the following rule:

If Λ̂p ≤ θ1, xp belongs to normal class

Otherwise, xp is an outlier .
(3.15)
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The whole procedure of training the proposed AEKOC is provided in Algorithm

3.1.

Algorithm 3.1 Training algorithm for AEKOC

Input: Training set X, regularization parameter (C), kernel feature mapping (Φ)

Output: Target class or Outlier

1: Perform kernel feature mapping using a Gaussian kernel.

2: Minimize the training error and weight simultaneously using (3.1).

3: After training the model, compute the predicted output of training data using

(3.11).

4: By using the predicted output of training data, compute a threshold θ1 using

(3.12) and (3.13).

5: At final step, whether a new input is an outlier or not, decides based on the rule

discussed in 3.15.

3.2 Experiments

All experiments in this section are carried out with MATLAB 2016a on Windows

7 (Intel Xeon 3 GHz processor, 64 GB RAM) environment. All existing and proposed

one-class classifiers are implemented and tested in the same environment. For eval-

uating the performance of these classifiers, we have experimented over 23 one-class

datasets. A brief description of these datasets is provided in Table 3.1. These one-

class datasets are retrieved from the web-page2, which are made available by Tax and

Duin [169] in the preprocessed form for OCC. These one-class datasets are originally

generated for the binary or multi-class class classification. For OCC experiments, Tax

and Duin [169] made it compatible with OCC in the following ways. If a dataset

has two or more than two classes, then alternately, we use each of the classes in the

dataset as the target class and the samples of the remaining classes as an outlier. In this

way, 23 one-class datasets are generated for OCC from 11 multi-class3 datasets. These

2http://homepage.tudelft.nl/n9d04/occ/
3These multi-class datasets are available at UCI repository [170]
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datasets belong to various disciplines viz; finance, medical, radar-emission, flower, and

glass datasets. In all our experiments on these datasets, 5-fold cross-validation (CV)

procedure is used for optimal parameter selection and repeated these experiments 5

times. We compute Geometric mean or Gmean (ηg) for each fold in the experiments

for evaluating the performance of each of the classifiers. We also compute mean of all

ηg values obtained by a classifier over all datasets and denote as ηm. Moreover, we

have also performed the Friedman test and computed Friedman Rank (ηf ) for ranking

these classifiers as per their performance over all datasets. These three performance

criteria (ηg, ηm, ηf ) are briefly discussed in Section 2.8 of Chapters 2. It is to be noted

that we follow the same experimental setup, datasets, and state-of-the-art methods

for experimentation in Chapter 3, 4, 5, and 6.

3.2.1 Existing Kernel-based Methods

For comparing our proposed method from the existing kernel-based methods, we

have selected 4 state-of-the-art existing kernel-based one-class classifiers, which are

mentioned as follows:

(i) OCSVM[1] is implemented using LIBSVM library4 [171].

(ii) SVDD[31] is implemented by using DD Toolbox5[54].

(iii) The code of KOC[7] is provided by the author of the paper and made available

at GitHub6.

(iv) The code of KPCA[4] is obtained from this link7 .

Here, KPCA is a reconstruction framework-based classifier and remaining three are

boundary framework-based classifiers.

4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
5https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/intelligent-systems/

pattern-recognition-bioinformatics/pattern-recognition-laboratory/

data-and-software/dd-tools/
6https://github.com/Chandan-IITI/One-Class-Kernel-ELM
7http://www.heikohoffmann.de/kpca.html
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Table 3.1: Dataset description

S. No. Name Abbreviated
Name

#Targ-
ets

#Anom-
alies

#Fea-
tures

#Sam-
ples

1 Australia
Credit(1)

Aust(1) 307 383 14 690

2 Australia
Credit(2)

Aust(2) 383 307 14 690

3 Bupa(1) Bupa(1) 145 200 6 345
4 Bupa(2) Bupa(2) 200 145 6 345

5 Ecoli(1) Ecoli(1) 143 193 7 336
6 Ecoli(2) Ecoli(2) 193 143 7 336

7 German
Credit(1)

Germ(1) 700 300 24 1000

8 German
Credit(2)

Germ(2) 300 700 24 1000

9 Glass(1) Glass(1) 76 138 9 214
10 Glass(2) Glass(2) 138 76 9 214

11 Heart(1) Heart(1) 160 137 13 297
12 Heart(2) Heart(2) 137 160 13 297

13 Ionosphere(1) Iono(1) 225 126 34 351
14 Ionosphere(2) Iono(2) 126 225 34 351

15 Iris(1) Iris(1) 50 100 4 150
16 Iris(2) Iris(2) 50 100 4 150
17 Iris(3) Iris(3) 50 100 4 150

18 Japan
Credit(1)

Jap(1) 294 357 15 651

19 Japan
Credit(2)

Jap(2) 357 294 15 651

20 Parkinson(1) Park(1) 520 520 28 1040
21 Parkinson(2) Park(2) 520 520 28 1040

22 Pima Indians
Diabetes(1)

Pima(1) 500 268 8 768

23 Pima Indians
Diabetes(2)

Pima(2) 268 500 8 768
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3.2.2 Range of the Parameters for the Proposed and Existing

Methods

All used methods in this thesis are kernel-based only. These methods employ a

Radial Basis Function (RBF) kernel, which is computed for data points xi and xj as

follows:

K(xi, xj) = exp

(
−
‖xi − xj‖22

2σ2

)
, (3.16)

where σ is calculated as the mean Euclidean distance between training vectors in

the corresponding feature space. For the KOC and AEKOC methods, regularization

parameter (C) is selected from the range {2−5, . . . , 25}. For SVDD, the regularization

parameter (C) is set as 1
ν∗N . For KPCA based OCC, the percentage of the preserved

variance is selected from the range [85, 90, 95]. The fraction of rejection (ν) of outliers

during threshold selection is set equal to 0.05 for all methods presented in this thesis.

3.2.3 Performance Evaluation

Detailed results of 5 one-class classifiers in terms of ηg are presented in Table 3.2.

After analyzing this table, it is observed that AEKOC yields the best results for 6 out

of 23 datasets. Table 3.3 shows that number of datasets with the best ηg value for

each classifier. In some cases, two or more than two classifiers yield identical and best

results for the same dataset. It can be observed from Table 3.2 and 3.3 that OCSVM

and SVDD yield identical and best results for 3 datasets viz., Glass(1), Heart(1), and

Iono(1). We further analyze that SVDD and AEKOC yield the best results for ≈ 30%

and ≈ 26% of datasets, respectively. Hence, we can not declare any one classifier

as the best classifier just by looking at the best ηg value in Table 3.2. The same

observation has been found by Fernandez et al. [167] when they tested 179 classifiers

on 121 datasets. By following their work [167], we compute three criteria: (i) ηg and

an average of ηg (ηm) (ii) Friedman statistical testing (iii) Friedman rank (ηf ). We

have analyzed the performance of the existing and proposed classifiers based on these

three criteria as follows:
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Table 3.2: Performance in terms of ηg for 23 datasets

Datasets KPCA OCSVM SVDD KOC AEKOC

Aust(1) 63.69 66.08 65.55 65.07 72.88

Aust(2) 73.06 76.59 76.78 74.21 77.96

Bupa(1) 62.91 60.64 60.64 57.09 56.19

Bupa(2) 74.28 69.78 69.75 68.81 68.31

Ecoli(1) 65.79 89.43 89.49 89.38 89.00

Ecoli(2) 72.30 79.42 78.87 82.32 79.16

Germ(1) 80.77 80.34 81.10 73.17 74.04

Germ(2) 49.75 52.80 52.77 53.41 51.57

Glass(1) 57.69 59.61 59.61 58.91 59.29

Glass(2) 77.65 73.32 72.89 73.08 73.22

Heart(1) 70.42 72.91 72.91 65.03 67.99

Heart(2) 63.50 64.90 64.90 66.39 61.15

Iono(1) 76.54 93.13 93.13 92.69 92.95

Iono(2) 57.10 44.63 44.63 53.40 41.04

Iris(1) 96.44 85.06 84.12 92.35 92.79

Iris(2) 72.99 81.70 81.70 85.59 88.37

Iris(3) 69.29 83.18 82.67 83.40 83.74

Jap(1) 64.09 71.45 70.15 67.33 76.23

Jap(2) 72.29 75.78 76.58 73.48 78.27

Park(1) 70.20 95.71 97.07 96.15 96.67

Park(2) 67.79 81.82 79.77 90.74 83.78

Pima(1) 77.98 79.18 79.21 79.04 78.66

Pima(2) 57.05 56.59 56.71 54.78 54.01

Mean of
all ηg
(ηm)

69.28 73.65 73.52 73.73 73.79
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Table 3.3: Number of datasets for which each one-class classifier yields best ηg

One-class
Classifiers

Number of datasets
with best ηg value

SVDD 7

AEKOC 6

KPCA 6

KOC 4

OCSVM 3

Table 3.4: Friedman Rank (ηf ) and mean of ηg (ηm)

3.4(a) In decreasing order of ηm

ηf ηm

AEKOC 3.00 73.79

KOC 3.13 73.73

OCSVM 2.54 73.65

SVDD 2.63 73.52

KPCA 3.70 69.28

3.4(b) In increasing order of ηf

ηf ηm

OCSVM 2.54 73.65

SVDD 2.63 73.52

AEKOC 3.00 73.79

KOC 3.13 73.73

KPCA 3.70 69.28

(i) We compute ηm for analyzing the combined performance of the classifier. ηm

value of each classifier is available in the last row of Table 3.2. It is also provided

in Table 3.4(a) in decreasing order of ηm. When we compare ηm values, then it

is observed that AEKOC performs better than all 4 existing classifiers in spite of

obtaining the best ηg for 6 datasets only. One more interesting fact is observed

that OCSVM shows better performance compared to KPCA and SVDD in terms

of ηm, while it yields the best ηg for only three datasets.

(ii) Although AEKOC has yielded best ηm among 5 classifiers; however, we need

to verify the outcomes of the proposed and existing methods statistically. For

this purpose, we conduct a non-parametric Friedman test [166]. Friedman test

mainly computes three components viz., p-value, F-score, and critical value. If

the computed F-score is higher than the critical value, and the p-value is lesser

than the tolerance level α = 0.1, then the null hypothesis can be rejected with

90% of a confidence level. The computed p-value, F-score value, and critical

value are 0.09, 7.78 and 7.77, respectively. Since the computed F-score value is
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higher than the critical value, and the p-value is lesser than 0.1, we reject the

null hypothesis. Therefore, it is concluded that the outcomes presented in this

chapter are statistically significant.

(iii) Further, we compute Friedman Rank (ηf ) [166] for each classifier as discussed

in Section 2.8 of Chapter 2. We present ηf along with ηm of each classifier

in Table 3.4(b) in increasing order of ηf . We consider ηf as the final decision

criterion to decide the rank of any classifiers. Here, we observe that in spite of

best ηm value obtained by AEKOC, it slipped to 3rd position as per ηf criterion.

According to ηf values, OCSVM emerges as the best classifier.

Further, we compute the training and testing time for all 5 classifiers. The total

time taken in training and testing has been presented collectively in Table 3.5 and

the average time is plotted in Figure 3.2. KOC and AEKOC consume less average

time compared to other classifiers, and this outcome is evident because both use a

non-iterative approach to learning.

Figure 3.2: Consumed average time by one-class classifiers
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Table 3.5: Total time (training time + testing time in seconds) consumed by existing
and proposed one-class classifiers

Datasets KPCA OCSVM∗ SVDD KOC AEKOC

Aust(1) 0.119 0.033 0.603 0.011 0.016

Aust(2) 0.037 0.019 0.155 0.003 0.003

Bupa(1) 0.038 0.017 0.124 0.003 0.003

Bupa(2) 0.214 0.019 0.127 0.006 0.006

Ecoli(1) 0.166 0.021 0.201 0.009 0.010

Ecoli(2) 1.343 0.032 0.217 0.019 0.020

Germ(1) 0.532 0.025 0.150 0.014 0.015

Germ(2) 0.138 0.019 0.143 0.006 0.006

Glass(1) 0.186 0.019 0.133 0.006 0.007

Glass(2) 0.612 0.023 0.162 0.011 0.011

Heart(1) 0.303 0.021 0.139 0.008 0.008

Heart(2) 3.075 0.048 0.319 0.035 0.035

Iono(1) 0.788 0.031 0.163 0.017 0.018

Iono(2) 0.580 0.023 0.154 0.010 0.012

Iris(1) 0.777 0.024 0.171 0.014 0.012

Iris(2) 0.612 0.025 0.153 0.011 0.010

Iris(3) 0.697 0.030 0.168 0.011 0.011

Jap(1) 0.139 0.020 0.133 0.006 0.008

Jap(2) 0.122 0.023 0.136 0.006 0.006

Park(1) 2.123 0.039 0.227 0.026 0.028

Park(2) 1.859 0.041 0.231 0.029 0.028

Pima(1) 0.147 0.020 0.130 0.006 0.007

Pima(2) 0.190 0.021 0.140 0.007 0.007

* Here, training times of all classifiers, except OCSVM, are
computed on the MATLAB platform. OCSVM has used
Mex C++ -compiler in MATLAB. Therefore, it consumes
lesser time compared to SVDD. Generally, OCSVM and
SVDD consume a similar time on the same platform.

65



3.3 Summary

This chapter has proposed a reconstruction framework-based one-class classifier

using a non-iterative approach of learning. This is a single hidden layer-based archi-

tecture. Since the proposed classifier has used a non-iterative approach of learning, it

consumes less average time compared to the iterative learning-based state-of-the-art

one-class classifiers. We have tested on 23 benchmark datasets from various dis-

ciplines, and compared outcomes with 3 boundary and 1 reconstruction framework-

based one-class classifiers. AEKOC has outperformed reconstruction framework-based

one-class classifier (i.e., KPCA) by a significant amount of more than 4% in terms of

ηm. However, AEKOC has yielded slightly better ηm value compared to 3 state-of-

the-art boundary framework-based one-class classifiers. Further, when we compared

KRR-based one-class classifiers i.e., KOC (boundary framework-based) and AEKOC

(reconstruction framework-based), they have yielded best ηg for 13 and 10 datasets,

respectively. Both have yielded similar ηm and ηf value. Therefore, it is very difficult

to declare any one framework-based one-class classifier as the best classifier.

We can further improve the performance of the KRR-based one-class classifier by

taking a cue from the above discussion. We can combine the concept of boundary

and reconstruction framework in a single architecture, and this architecture can be

obtained by developing a multi-layer architecture. This multi-layer architecture is

explored for OCC in the next chapter.
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Chapter 4

Multi-layer Kernel Ridge Regression for

One-class Classification

In the previous chapters, KRR-based two one-class classifiers are discussed. One is

boundary framework-based, and the other is a reconstruction framework-based classi-

fier. The boundary framework is good in describing classification boundaries based on

the structure of the dataset, and the reconstruction framework is good in representing

the data in a better way. This chapter combines both frameworks (boundary and

reconstruction) in sequential order and develop a multi-layer method. In this way,

proposed multi-layer method gets benefited from both frameworks. It is discussed in

detail in Section 4.1.

4.1 Multi-layer Kernel Ridge Regression for One-

class Classification:MKOC

In this section, first, we discuss all preliminaries in Section 4.1.1, which is required

to discuss the proposed method MKOC. Then, a proposed method MKOC is presented

in Section 4.1.2. Further, two types of threshold criteria are discussed in Section 4.1.3.
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Figure 4.1: A schematic diagram of MKOC

4.1.1 Preliminaries

In this section, we provide some notations based on the schematic diagram of

MKOC, as shown in Figure 4.1. In MKOC, stacked kernelized Auto-Encoders

(KAEs) are employed for defining the successive data representation. In the 1st

KAE of Figure 4.1, input training matrix is denoted by X = X0 = {x0
i}, where

x0
i = [x0i1, x

0
i2, ..., x

0
in], i = 1, 2, ..., N , is the n-dimensional input vector of the ith train-

ing sample. Let us assume that there are d layers in the proposed architecture, i.e.,

h = 1, 2, ..., d. The output of the hth layer is passed as input to the (h+1)th layer. Let us

denote output at hth layer of Auto-Encoder, Xh =
{
xhi
}

, where xhi = [xhi1, x
h
i2, ..., x

h
in],

i = 1, 2, ..., N . Xh corresponds to the output of the hth Auto-Encoder and the input

of the (h + 1)th Auto-Encoder. Each of the Auto-Encoders involves a data mapping

using function φ(.), which maps Xh−1 to non-linear feature space as Φh = φ(Xh−1).

φ(.) corresponds to a non-linear feature mapping of Xh−1 to the corresponding ker-

nel space Kh = (Φh)TΦh, where Φh =
[
φh1 , φ

h
2 , ..., φ

h
N

]
. The data representation

obtained by calculating the output of the (d− 1)th Auto-Encoder in the architecture

is passed to the dth layer for OCC using KOC. Two types of training errors are gen-

erated by MKOC. One of them is generated by the Auto-Encoder until d− 1 layers

and denoted as an error matrix Eh = [eh1 , e
h
2 , . . . , e

h
N ], where h = 1, 2, ..., (d − 1).

Another one is generated by the one-class classifier at dth layer which is denoted as an
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error vector Ed = [ed1, e
d
2, . . . , e

d
N ]. Based on the above notations, formulations of the

proposed method MKOC is discussed in the following section.

4.1.2 Proposed Method MKOC

In this section, a Multi-layer KRR-based architecture for One-class Classification

(MKOC) is proposed. This proposed multi-layer architecture is constructed by stack-

ing various KRR-based Auto-Encoders (KAEs), followed by a KRR-based one-class

classifier (KOC), as shown in Figure 4.1. Here, KAE and KOC belong to reconstruc-

tion and boundary framework-based method, respectively. The overall architecture of

MKOC is formed by two processing steps as follows:

In the first step, (d− 1) KAEs are trained. Each KAE defines a pair (Xh, βha), and

is stacked in a hierarchical manner. Here, βha denotes weight matrix of the hth Auto-

Encoder. The hth KAE minimizes the following criterion, which involves a non-linear1

feature mapping Xh−1→ Φh:

Minimize
βh
a ,e

h
i

: £KAE =
1

2

∥∥βha∥∥2F +
C

2

N∑
i=1

∥∥ehi ∥∥22
Subject to : (βha)Tφhi = (xh−1

i )T − (ehi )
T , i = 1, 2, ..., N,

(4.1)

where C is a regularization parameter, and ehi is a training error vector corresponding

to the ith training sample at hth layer. Based on the Representer Theorem [103],

we express βha as a linear combination of the training data representation Φh and a

reconstruction weight matrix W h
a :

βha = ΦhW h
a . (4.2)

1Linear case can be easily derived from (4.1) by substituting φh
i → xh−1

i
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By using (4.2), minimization criterion in (4.1) is reformulated as follows:

Minimize
Wh

a ,e
h
i

: £KAE =
1

2
Tr
(
(W h

a )T (Φh)TΦhW h
a

)
+
C

2

N∑
i=1

∥∥ehi ∥∥22
Subject to : (W h

a )T (Φh)Tφhi = (xh−1
i )T − (ehi )

T , i = 1, 2, ..., N.

(4.3)

Here, ’Tr’ represents trace of a matrix. Further we substitute Kh = (Φh)TΦh,

and khi = (Φh)Tφhi (where the individual elements of khi equal to khij = (φhi )
Tφhj , j =

1, 2, . . . , N) in (4.3). Now, the optimization problem in (4.3) is written as:

Minimize
Wh

a ,e
h
i

: £KAE =
1

2
Tr
(
(W h

a )TKhW h
a

)
+
C

2

N∑
i=1

∥∥ehi ∥∥22 ,
Subject to : (W h

a )Tkhi = (xh−1
i )T − (ehi )

T , i = 1, 2, ..., N.

(4.4)

The Lagrangian relaxation of (4.4) is given below:

£KAE =
1

2
Tr
(
(W h

a )TKhW h
a

)
+
C

2

N∑
i=1

∥∥ehi ∥∥22 − N∑
i=1

αhi ((W h
a )Tkhi − (xh−1

i )T + (ehi )
T ),

(4.5)

where α = {αhi }, i = 1, 2 . . . N , is a Lagrangian multiplier. In order to optimize

£KAE, we compute its derivatives as follows:

∂£KAE

∂W h
a

= 0⇒W h
a = α, (4.6)

∂£KAE

∂ehi
= 0⇒ Eh =

1

C
α, (4.7)

∂£KAE

∂αhi
= 0⇒ (W h

a )TKh = (Xh−1)T − (Eh)T . (4.8)

The matrix W h
a is obtained by substituting (4.7) and (4.8) into (4.6) as follows:

W h
a =

(
Kh +

I

C

)−1
Xh−1. (4.9)
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Now, βha is derived by substituting (4.9) into (4.2):

βha = Φh

(
Kh +

I

C

)−1
Xh−1. (4.10)

Hence, the transformed data Xh by the hth KAE can be obtained as follows:

Xh = (Φh)Tβha = (Φh)TΦhW h
a = KhW h

a . (4.11)

where Kh ∈ RN×N is the kernel matrix for the hth layer. After mapping the training

data through the (d− 1) successive KAEs in the first step, the training data repre-

sentations defined by the outputs of the (d−1)th KAE are used in order to train a KOC

at dth layer in the second step. The second step represents the last layer (i.e., dth

layer) of MKOC, i.e., MKOCd. It involves a nonlinear feature mapping Xd−1→ Φd

and is trained by solving the following optimization problem:

Minimize
βd
o ,e

d
i

: £MKOCd =
1

2

∥∥βdo∥∥2 +
C

2

N∑
i=1

∥∥edi∥∥22
Subject to : (βdo)

Tφdi = r − edi , i = 1, 2, ..., N,

(4.12)

where edi is training error corresponding to ith training sample, βdo denotes weight

vector at dth layer, and r is any real number. We set r at equal to 1. By using

Representer Theorem [103], βdo is expressed as a linear combination of the training

data representation Φd and reconstruction weight vector W d
o :

βdo = ΦdW d
o . (4.13)

By using (4.13), the minimization criterion in (4.12) is reformulated as follows:

Minimize
W d

o ,e
d
i

: £MKOCd =
1

2
(W d

o )T (Φd)TΦdW d
o +

C

2

N∑
i=1

∥∥edi∥∥22
Subject to : (W d

o )T (Φd)Tφdi = r − edi , i = 1, 2, ..., N.

(4.14)
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Further, we substitute Kd = (Φd)TΦd, and kdi = (Φd)Tφdi (where the individ-

ual elements of kdi equal to kdij = (φdi )
Tφdj , j = 1, 2, . . . , N) in (4.14). Now, the

optimization problem in (4.14) is reformulated as follows:

Minimize
W d

o ,e
d
i

: £MKOCd =
1

2
(W d

o )TKdW d
o +

C

2

N∑
i=1

∥∥edi∥∥22
Subject to : (W d

o )Tkdi = r − edi , i = 1, 2, ..., N.

(4.15)

The Lagrangian relaxation of (4.15) is given below:

£MKOCd =
1

2
(W d

o )TKdW d
o +

C

2

N∑
i=1

∥∥edi∥∥22 − N∑
i=1

αdi ((W
d
o )Tkdi − r + edi ), (4.16)

where α = {αdi }, i = 1, 2 . . . N , is a Lagrangian multiplier. In order to optimize

(4.16), we compute its derivatives as follows:

∂£MKOCd

∂W d
o

= 0⇒W d
o = α, (4.17)

∂£MKOCd

∂edi
= 0⇒ Ed =

1

C
α, (4.18)

∂£MKOCd

∂αdi
= 0⇒ (W d

o )TKd = r−Ed. (4.19)

The weight vector W d
o of dth layer (i.e., last layer) is, thus, obtained by substituting

(4.18) and (4.19) into (4.17), and is given by:

W d
o =

(
Kd +

I

C

)−1
r. (4.20)

βdo is derived by substituting (4.20) in (4.13):

βdo = Φd

(
Kd +

I

C

)−1
r, (4.21)

where r is a vector having all elements equal to r. Since the value r can be arbitrary,

we set it equal to r = 1.
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The predicted output of the final layer (i.e., dth layer) of MKOC (for training

samples) can be calculated as follows:

Ô = (Φd)Tβdo = (Φd)TΦdW d
o = KdW d

o , (4.22)

where Ô is the predicted output of training data.

After completing the training process and getting the predicted output of the

training data, a threshold is required to decide whether any sample is an outlier or

not. Two types of threshold criteria (θ1 and θ2) are discussed in the next section.

4.1.3 Decision Function

Two types of thresholds namely, θ1 and θ2, are employed with the proposed

method, which are determined as follows:

(i) For θ1:

Step I We calculate the distance between the predicted value of the ith training

sample and r, and store in a vector, Λ = {Λi} and i = 1, 2, ..., N , as

follows:

Λi =
∣∣∣Ôi − r

∣∣∣ . (4.23)

Step II After storing all distances in Λ as per (4.23), we sort these distances

in decreasing order and denoted by a vector Λdec. Further, we reject

a few percents of training samples based on the deviation. Most de-

viated samples are rejected because they are most probably far from

the distribution of the target data. The threshold is decided based on

these deviations as follows:

θ1 = Λdec(bν ∗Nc), (4.24)

where 0 < ν ≤ 1 is the fraction of rejection of training samples for

deciding threshold value. N is the number of training samples and b c
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denotes floor operation.

(ii) For θ2: We select threshold (θ2) as a small fraction of the mean of the predicted

output:

θ2 = (
⌊
ν ∗mean(Ô)

⌋
), (4.25)

where 0 < ν ≤ 1 is the fraction of rejection for deciding threshold value.

The training process is completed after getting a threshold value by either using

θ1 or θ2. Afterward, during testing, a test vector xp is fed to the trained multi-layer

architecture and its output Ôp is obtained. Further, compute Λ̂p for both types of

threshold as follows:

For θ1, calculate the distance (Λ̂p) between the predicted value Ôp of the pth testing

sample and r:

Λ̂p =
∣∣∣Ôp − r

∣∣∣ . (4.26)

For θ2, calculate the distance (Λ̂p) between the predicted value Ôp of the pth testing

sample and mean of the predicted values obtained after training as follows:

Λ̂p =
∣∣∣Ôp −mean(Ô)

∣∣∣ . (4.27)

Finally, xp is classified based on the following rule:

xp belongs to

Target class, If Λ̂p ≤ Threshold

Outlier, otherwise.
(4.28)

The complete training steps followed by MKOC are described in Algorithm 4.1.

Overall, the proposed multi-layer OCC architecture creates two variants of MKOC

using two types of threshold criteria (viz., θ1 and θ2), i.e., MKOC θ1 and MKOC θ2.

4.2 Experiments

In this chapter, we follow the same experimental setup and datasets, as mentioned

in Section 3.2 of Chapter 3. In order to compare our proposed methods viz., AEKOC
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Algorithm 4.1 Multi-layer KRR-based architecture for OCC: MKOC

Input: Training set X, regularization parameter (C), non-linear feature map (Φ),

number of layers (d)

Output: Target class or Outlier

Initially, X0 = X

1: for h = 1 to d do

2: First Phase:

3: if h < d then

4: Pass Xh−1 as an input to hth KAE.

5: Train the KAE as per (4.4).

6: Compute (Xh, βha) during training of hth KAE.

7: Transformed output Xh is computed from the current layer and pass it as

the input to the next layer, i.e., (h+ 1)th, in the hierarchy.

8: Second Phase:

9: else

10: Train final layer, i.e., dth layer, for one-class classification.

11: Output of (d − 1)th Auto-Encoder is passed as an input to the one-class

classifier at dth layer.

12: Train the dth layer by MKOCd as per (4.15).

13: end if

14: end for

15: Compute a threshold value either by using θ1 (4.24) or θ2 (4.25).

16: At a final step, whether a new input is outlier or not, decides based on the rule

discussed in (4.28).
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(Chapter 3), and MKOC, we have conducted experimentation on various existing

state-of-the-art kernel-based OCC methods, such as OCSVM [1], SVDD [1], KPCA [4],

and KOC [7]. Overall, performance among 7 variants of one-class classifier is presented

next.

Performance of 7 variants of one-class classifiers in terms of ηg are presented in

Table 4.1. After analyzing this table, it is observed that MKOC θ1 and MKOC θ2,

each yields the best results for 6 out of 23 datasets. Table 4.2 shows that number

of datasets with the best ηg value for each classifier. Proposed classifiers MKOC θ1

and MKOC θ2 attain top positions in Table 4.2. Proposed classifier from the previous

chapter (i.e., AEKOC) still yields the best result for 4 datasets. Overall, these three

proposed classifiers collectively yield the best results for 16 out of 23 datasets. As

per discussion in Chapter 3, we compute three performance criteria [167] for further

analysis: (i) average of ηg (ηm) (ii) Friedman test (F-score and p-value) (iii) Friedman

rank (ηf ). We analyze the performance of 7 variants of different classifiers based on

these three criteria as follows:

(i) We compute ηm for analyzing the combined performance of the classifier. ηm

value of each classifier is available in the last row of Table 4.1. It is also provided

in Table 4.3(a) in decreasing order of ηm. When we compare ηm values; then it is

observed that MKOC2 performs better than 4 existing and 1 proposed classifiers

in spite of obtaining the best ηg for 12 datasets only. As discussed in Chapter

3, AEKOC only slightly yields better ηm compared to other existing classifiers.

However, MKOC θ1 yields at least 1.56% more ηm for all datasets compared to

AEKOC and 4 state-of-the-art existing classifiers.

(ii) Although both MKOC2 variants attain top positions among 7 variants of classi-

fiers in Table 4.3(a); however, we need to verify the outcomes of the proposed and

existing methods statistically. For this purpose, we conduct a non-parametric

Friedman test [166] similar to discussed in Section 3.2 of Chapter 3. Friedman

test mainly computes three components viz., p-value, F-score, and critical value.

2 Wherever we mention the name MKOC, it collectively represents MKOC θ1 and MKOC θ2.
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Table 4.1: Performance in terms of ηg for 23 datasets

Datasets KPCA OCSVM SVDD KOC AEKOC MKOC θ1 MKOC θ2

Aust(1) 63.69 66.08 65.55 65.07 72.88 72.12 72.43

Aust(2) 73.06 76.59 76.78 74.21 77.96 79.89 80.31

Bupa(1) 62.91 60.64 60.64 57.09 56.19 62.55 62.19

Bupa(2) 74.28 69.78 69.75 68.81 68.31 73.56 73.61

Ecoli(1) 65.79 89.43 89.49 89.38 89.00 82.51 80.36

Ecoli(2) 72.30 79.42 78.87 82.32 79.16 84.42 81.76

Germ(1) 80.77 80.34 81.10 73.17 74.04 74.10 82.79

Germ(2) 49.75 52.80 52.77 53.41 51.57 54.46 49.59

Glass(1) 57.69 59.61 59.61 58.91 59.29 62.46 59.23

Glass(2) 77.65 73.32 72.89 73.08 73.22 77.15 75.69

Heart(1) 70.42 72.91 72.91 65.03 67.99 71.72 73.93

Heart(2) 63.50 64.90 64.90 66.39 61.15 68.89 59.51

Iono(1) 76.54 93.13 93.13 92.69 92.95 89.54 88.77

Iono(2) 57.10 44.63 44.63 53.40 41.04 67.70 60.78

Iris(1) 96.44 85.06 84.12 92.35 92.79 99.59 93.87

Iris(2) 72.99 81.70 81.70 85.59 88.37 77.20 74.07

Iris(3) 69.29 83.18 82.67 83.40 83.74 71.29 69.82

Jap(1) 64.09 71.45 70.15 67.33 76.23 74.45 74.66

Jap(2) 72.29 75.78 76.58 73.48 78.27 80.14 80.55

Park(1) 70.20 95.71 97.07 96.15 96.67 91.48 91.70

Park(2) 67.79 81.82 79.77 90.74 83.78 80.97 79.65

Pima(1) 77.98 79.18 79.21 79.04 78.66 79.21 80.50

Pima(2) 57.05 56.59 56.71 54.78 54.01 57.70 57.80

Mean of
all ηg
(ηm)

69.28 73.65 73.52 73.73 73.79 75.35 74.07
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Table 4.2: Number of datasets for which each one-class classifier yields the best ηg

One-class
Classifiers

Number of datasets
with the best ηg
value

MKOC θ1 6.00

MKOC θ2 6.00

AEKOC 4.00

KPCA 3.00

SVDD 3.00

OCSVM 1.00

KOC 1.00

Table 4.3: Friedman Rank (ηf ) and mean of ηg (ηm)

4.3(a) In decreasing order of ηm

ηf ηm

MKOC θ1 2.91 75.35

MKOC θ2 3.48 74.07

AEKOC 4.17 73.79

KOC 4.48 73.73

OCSVM 3.80 73.65

SVDD 3.89 73.52

KPCA 5.26 69.28

4.3(b) In increasing order of ηf

ηf ηm

MKOC θ1 2.91 75.35

MKOC θ2 3.48 74.07

OCSVM 3.80 73.65

SVDD 3.89 73.52

AEKOC 4.17 73.79

KOC 4.48 73.73

KPCA 5.26 69.28
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Table 4.4: Total time (training time + testing time in seconds) consumed by existing
and proposed one-class classifiers

Datasets KPCA OCSVM∗ SVDD KOC AEKOC MKOC

Aust(1) 0.119 0.033 0.603 0.011 0.016 0.006

Aust(2) 0.037 0.019 0.155 0.003 0.003 0.005

Bupa(1) 0.038 0.017 0.124 0.003 0.003 0.005

Bupa(2) 0.214 0.019 0.127 0.006 0.006 0.029

Ecoli(1) 0.166 0.021 0.201 0.009 0.010 0.013

Ecoli(2) 1.343 0.032 0.217 0.019 0.020 0.143

Germ(1) 0.532 0.025 0.150 0.014 0.015 0.041

Germ(2) 0.138 0.019 0.143 0.006 0.006 0.014

Glass(1) 0.186 0.019 0.133 0.006 0.007 0.022

Glass(2) 0.612 0.023 0.162 0.011 0.011 0.069

Heart(1) 0.303 0.021 0.139 0.008 0.008 0.027

Heart(2) 3.075 0.048 0.319 0.035 0.035 0.313

Iono(1) 0.788 0.031 0.163 0.017 0.018 0.058

Iono(2) 0.580 0.023 0.154 0.010 0.012 0.057

Iris(1) 0.777 0.024 0.171 0.014 0.012 0.083

Iris(2) 0.612 0.025 0.153 0.011 0.010 0.051

Iris(3) 0.697 0.030 0.168 0.011 0.011 0.076

Jap(1) 0.139 0.020 0.133 0.006 0.008 0.019

Jap(2) 0.122 0.023 0.136 0.006 0.006 0.016

Park(1) 2.123 0.039 0.227 0.026 0.028 0.159

Park(2) 1.859 0.041 0.231 0.029 0.028 0.163

Pima(1) 0.147 0.020 0.130 0.006 0.007 0.016

Pima(2) 0.190 0.021 0.140 0.007 0.007 0.021

Average time 0.643 0.026 0.186 0.012 0.012 0.061

* Here, training times of all classifiers, except OCSVM, are computed on
MATLAB platform. OCSVM has used Mex C++ -compiler in MATLAB.
Therefore, it consumes lesser time compared to SVDD. However, OCSVM
and SVDD consumes similar amount of average time on the same platform.
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The computed p-value, F-score value and critical value are 0.01, 16.52 and 12.59,

respectively. Since the computed F-score value is higher than the critical value,

and the p-value is lesser than the tolerance level 0.05, we reject the null hy-

pothesis with 95% of confidence. Therefore, it is concluded that the outcomes

presented in this chapter are statistically significant.

(iii) Further, we compute Friedman Rank (ηf ) [166] for each classifier as discussed in

Section 2.8 of Chapter 2. We consider ηf as the final decision criteria to decide

the rank of any classifiers. In Table 4.3(b), we present ηf along with ηm of each

classifier in increasing order of ηf . In Table 4.3(b), KRR-based single hidden

layer-based methods (KOC and AEKOC) do not obtain better ηf in spite of

obtaining better ηm compared to the OCSVM, SVDD, and KPCA. However,

both multi-layer variants, MKOC θ1 and MKOC θ2, attain top position among

7 variants of classifiers in terms of both criteria i.e., ηf and ηm. Although,

MKOC θ1 and MKOC θ2 yield the best results for the same number of datasets

(see Table 4.2), MKOC θ1 outperforms MKOC θ2 in terms of ηm and ηf .

Further, we compute the training and testing time for these classifiers. The total

time taken in training and testing has been presented collectively in Table 4.4. The

average time is presented in the last row of this table. MKOC2 consumes more average

time compared to KRR-based single hidden layer-based methods (KOC and AEKOC).

It is due to its multi-layer architecture. Despite the multi-layer architecture of MKOC,

it consumes significantly less average time compared to KPCA and SVDD due to its

non-iterative approach of learning. In last, we need to discuss one crucial aspect of

multi-layer architecture, i.e., number of layers. We have experimented with 5 layers.

However, we observe that the performance of the classifier either slightly improves

sometimes or mostly degraded after 3rd layer. Therefore, the number of layers is

empirically decided, and all presented results in this and next chapter of this thesis

use 3-layered architecture.

80



4.3 Summary

This chapter has proposed a multi-layer architecture for OCC, which follows a non-

iterative approach of learning. It has combined the concept of two different frameworks

i.e., boundary and reconstruction. We have used two types of threshold criteria and

proposed two variants, namely MKOC θ1 and MKOC θ2. MKOC also consumes

less average time compared to KPCA and SVDD in spite of multi-layer architecture.

However, MKOC consumes more time compared to KOC and AEKOC due to its

multi-layer architecture. MKOC variants have achieved better ηm and ηf compared

to all mentioned one-class classifiers in this chapter. Conversely, proposed classifier

AEKOC was unable to achieve the same in Chapter 3. MKOC θ1 obtained better ηm

and ηf compared to MKOC θ2 and emerged as a top performer among all mentioned

methods. We have also statistically verified that outcomes presented in this chapter

are statistically significant with 95% of confidence.

We have observed that Auto-Encoder has helped the proposed methods (AEKOC

and MKOC) in getting better performance by providing a better representation of the

data. However, it does not consider structural information of the data. Therefore,

structural information does not play any role in deciding the boundary of the pro-

posed classifiers. The structural information has well-representation power, which can

enhance the performance of the classifier. It is explored in the next chapter, where we

combine the concept of structural information with MKOC.
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Chapter 5

Graph-Embedded Multi-layer Kernel

Ridge Regression for One-class

Classification

In the previous chapter, a KRR-based multi-layer one-class classifier is proposed,

which utilizes representation learning in its architecture. However, this classifier does

not utilize the structural information of the data. Structural information has well-

representation power and can be utilized with any machine learning methods using

the Graph-Embedding approach [119, 121]. Structural information can be obtained

by using a Laplacian graph, as discussed in Section 2.4 of Chapter 2. In the current

chapter, the proposed classifier MKOC (discussed in Chapter 4) is extended by em-

bedding structural information within it, and referred to as Graph-Embedded MKOC

(GMKOC). The proposed GMKOC also combines two frameworks (boundary and

reconstruction) in sequential order, and develops a Graph-Embedded multi-layer ar-

chitecture. During the construction of GMKOC, we propose a novel Graph-Embedded

KRR-based Auto-Encoder, which provides a better representation of data. It helps

GMKOC to achieve better performance compared to existing KRR-based with and

without Graph-Embedded methods. The proposed method is discussed in detail in

the next section.
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5.1 Graph-Embedding with Multi-layer Kernel

Ridge Regression for One-class Classifica-

tion:GMKOC

In this section, first, we discuss all preliminariess in Section 5.1.1, which is re-

quired to discuss the proposed method GMKOC. Then, a proposed method GMKOC

is presented in Section 5.1.2. Further, two types of threshold criteria are discussed in

Section 5.1.3.

5.1.1 Preliminaries

The proposed GMKOC is a multi-layer architecture, which is shown in Figure

5.1. In the 1st Graph-Embedded KRR-based Auto-Encoder (GKAE) of this figure,

input training matrix is denoted by X = X0 = {x0
i}, where x0

i = [x0i1, x
0
i2, ..., x

0
in],

i = 1, 2, ..., N , is the n-dimensional input vector of the ith training sample. Let

us assume that there are d layers in the proposed architecture, i.e., h = 1, 2, ..., d.

Output of the hth layer is passed as input to the (h + 1)th layer. Let us denote

output at hth layer of Auto-Encoder, Xh =
{
xhi
}

, where xhi = [xhi1, x
h
i2, ..., x

h
in], i =

1, 2, ..., N . Xh corresponds to the output of the hth Auto-Encoder and the input of

the (h+1)th Auto-Encoder. Each of the Auto-Encoders involves a data mapping using

function φ(.), which maps Xh−1 to non-linear feature space as Φh = φ(Xh−1). φ(.)

corresponds to a non-linear feature mapping ofXh−1 to the corresponding kernel space

Kh = (Φh)TΦh, where Φh =
[
φh1 , φ

h
2 , ..., φ

h
N

]
. The data representation obtained by

calculating the output of the (d − 1)th Auto-Encoder in the architecture is passed to

the dth layer for OCC using Graph-Embedded KOC. The dth layer (i.e., last layer) of

GMKOC is denoted as GMKOCd. In Figure 5.1, Graph-Embedding is performed by

using a scattered matrix Sh, which encodes the variance information with the kernel

matrix. Here, Sh denotes scattered matrix of hth layer. Two types of training errors

and weight matrices are generated by GMKOC. The first type of training error matrix

and weight matrix are generated by the hth Auto-Encoder until (d − 1) layers and
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Figure 5.1: A schematic diagram of Graph-Embedded multi-layer KRR-based archi-
tecture for one-class classification

denoted as Eh = [eh1 , e
h
2 , . . . , e

h
N ] and βha , where h = 1, 2, ..., (d − 1), respectively.

Another type of training error vector and weight vector are generated by the one-class

classifier at dth layer and denoted as Ed = [ed1, e
d
2, . . . , e

d
N ] and βdo , respectively. Based

on the above notations, formulations of the proposed method GMKOC is discussed in

the following section.

5.1.2 Proposed Method GMKOC

In this section, a Graph-Embedded multi-layer KRR-based method for OCC

(GMKOC) is proposed. The multi-layer architecture of the proposed method is con-

structed by stacking various proposed Graph-Embedded KRR-based Auto-Encoders

(GKAEs), followed by a Graph-Embedded KRR-based one-class classifier at the last

layer (as shown in Figure 5.1). These stacked Auto-Encoders in GMKOC are em-

ployed for defining the successive data representation, and these layers are based on

the reconstruction frameworks. The last layer in GMKOC is based on a boundary

framework, which is a classification layer. Overall, GMKOC is a combination of re-

construction and boundary framework. It uses different types of Laplacian graph

for obtaining structural information of the data. The structural information primar-

ily provides variance information between the samples. The overall architecture of
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GMKOC is formed by two processing steps as follows:

In the first step, (d − 1) GKAEs are trained. Each GKAE defines a triplet

(Xh, βha , S
h), and is stacked in a hierarchical manner. GKAE involves non-linear

mapping of the input data into kernel feature space, i.e., Xh−1 → Φh. Let us first

discuss the process of Graph-Embedding1 in kernel feature space in the following lines;

then, we provide the proposed optimization problem for GKAE.

Let us define a graph Gh =
{
Φh, V h

}
where V h ∈ RN×N is the weight matrix

expressing similarities between the graph nodes φhi ∈ Φh. The Graph Laplacian matrix

of the hth GKAE is calculated by Lh = Dh − V h, where Dh is a diagonal degree

matrix in the hth layer defined as [47]:

Dh
ii =

N∑
j=1

V h
ij . (5.1)

Any Laplacian Graph can be exploited with GKAE. In our experiments, we have

used the fully connected and k-nearest neighbor graphs. These graphs compute the

similarity between samples using the heat kernel function as follows:

vhij = exp

(
−
∥∥φhi − φhj ∥∥22

2σ2

)
, (5.2)

where σ is a hyper-parameter scaling the square Euclidean distance between φhi and

φhj . In the case of k-nearest neighbor Graph, the weight matrix V h is defined as

follows:

V h
ij =

vhij, if φhj ∈ N h
i

0, otherwise,
(5.3)

where N h
i denotes the neighborhood of φhi . Using the above notations, the scatter

matrix Sh encodes the variance information as follows:

Sh = ΦhLh(Φh)T . (5.4)

1Graph-Embedding is discussed in detail in Section 2.4 of Chapter 2.
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Sh can be expressed as dispersion (scattering/variance) of training data in kernel

feature space from their mean [8, 47]:

Sh =
1

N

N∑
i=1

(φhi −Φh)(φhi −Φh)T

=
1

N
Φh(I − 1

N
11T )(Φh)T

= Φh(
1

N
I − 1

N2
11T )(Φh)T

= ΦhLh(Φh)T ,

(5.5)

where Φh expresses the mean of training vector in the kernel feature space, 1 ∈ <N

is a vector of ones and I ∈ <N×N is an identity matrix. It is quite clear that Sh can

be suppressed within the Graph Embedding Framework with the above expression,

where matrices Dh =
1

N
I and V h =

1

N2
11T .

Based on the above discussion of the Graph-Embedding, we formulate the opti-

mization problem of GKAE. Since the minimization criterion of GKAE is derived by

using vanilla KRR-based Auto-Encoder (KAE), we provide formulation of KAE as

follows:

Minimize
βh
a ,e

h
i

: £KAE =
1

2

∥∥βha∥∥2F +
C

2

N∑
i=1

∥∥ehi ∥∥22
Subject to : (βha)Tφhi = (xh−1

i )T − (ehi )
T , i = 1, 2, ..., N,

(5.6)

where C is a regularization parameter, and ehi is a training error vector corresponding

to the ith training sample at hth layer. Based on the minimization criterion in (5.6) and

scatter matrix in (5.4), GKAE for hth layer (where h = 1, 2, . . . , (d− 1)) is formulated

as follows:

Minimize
βh
a ,e

h
i

: £GKAE =
1

2
Tr
(
(βha)T (Sh + λI)βha

)
+
C

2

N∑
i=1

∥∥ehi ∥∥22
Subject to : (βha)Tφhi = (xh−1

i )T − (ehi )
T , i = 1, 2, ..., N,

(5.7)

where λ represents graph regularization parameter. The optimization problem of

87



GKAE simultaneously minimizes the training error as well as class compactness. We

express (5.7) using (5.5) as follows:

£GKAE =
1

2
Tr
(
(βha)T (Sh + λI)βha

)
+
C

2

N∑
i=1

∥∥(xh−1
i )T − (βha)Tφhi

∥∥2
2

=
1

N

N∑
i=1

(
((βha)Tφhi − (βha)TΦh)T ((βha)Tφhi − (βha)TΦh)

)
+
C

2

N∑
i=1

∥∥(xh−1
i )T − (βha)Tφhi

∥∥2
2

+
λ

2
Tr
(
(βha)Tβha

)
=

1

N

N∑
i=1

∥∥ohi − oh∥∥22 +
C

2

N∑
i=1

∥∥(xh−1
i )T − ohi

∥∥2
2

+
λ

2
Tr
(
(βha)Tβha

)
,

(5.8)

where ohi = (βha)Tφhi and oh = (βha)TΦh. Here, the regularization parameter C

provides the trade-off between the two objectives viz., minimizing the training error

and class compactness.

Further, based on the Representer Theorem [103], we express βha as a linear com-

bination of the training data representation Φh and a reconstruction weight matrix

W h
a :

βha = ΦhW h
a . (5.9)

Hence, by using Representer Theorem [103], minimization criterion in (5.7) is refor-

mulated as follows:

Minimize
Wh

a ,e
h
i

: £GKAE =
1

2
Tr
(
(W h

a )T (Φh)T (ΦhLh(Φh)T

+λI)ΦhW h
a

)
+
C

2

N∑
i=1

∥∥ehi ∥∥22 ,
Subject to : (W h

a )T (Φh)Tφhi = (xh−1
i )T − (ehi )

T , i = 1, 2, ..., N.

(5.10)

Here, ’Tr’ represents trace of a matrix. Further we substitute Kh = (Φh)TΦh,

and khi = (Φh)Tφhi (where the individual elements of khi equal to khij = (φhi )
Tφhj , j =

1, 2, . . . , N) in (5.10). Now, the optimization problem in (5.10) is written as:
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Minimize
Wh

a ,e
h
i

: £GKAE =
1

2
Tr
(
(W h

a )T (KhLhKh + λKh)W h
a

)
+
C

2

N∑
i=1

∥∥ehi ∥∥22 ,
Subject to : (W h

a )Tkhi = (xh−1
i )T − (ehi )

T , i = 1, 2, ..., N.

(5.11)

The Lagrangian relaxation of (5.11) is given below:

£GKAE =
1

2
Tr
(
(W h

a )T (KhLhKh + λKh)W h
a

)
+
C

2

N∑
i=1

∥∥ehi ∥∥22 − N∑
i=1

αhi ((W h
a )Tkhi − (xh−1

i )T + (ehi )
T ),

(5.12)

where αh = {αhi }, i = 1, 2 . . . N , is a Lagrangian multiplier. In order to optimize

(5.12), we compute its derivatives as follows:

∂£GKAE

∂W h
a

= 0⇒W h
a = (LhKh + λI)−1αh, (5.13)

∂£GKAE

∂ehi
= 0⇒ Eh =

1

C
αh, (5.14)

∂£GKAE

∂αhi
= 0⇒ (W h

a )TKh = (Xh−1)T − (Eh)T . (5.15)

The matrix W h
a is obtained by substituting (5.14) and (5.15) into (5.13) as follows:

W h
a =

(
Kh +

1

C
LhKh +

λ

C
I

)−1
Xh−1. (5.16)

Now, βha is derived by substituting (5.16) into (5.9):

βha = Φh

(
Kh +

1

C
LhKh +

λ

C
I

)−1
Xh−1. (5.17)

After mapping the training data through the (d − 1) successive GKAEs in the

first step, the training data representations defined by the outputs of the (d − 1)th

GKAE are used in order to train dth layer (i.e., last layer) of GMKOC (GMKOCd) in

the second step. The GMKOCd involves a nonlinear mapping Xd−1 → Φd and is
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trained by solving the following optimization problem:

Minimize
βd
o ,e

d
i

: £GMKOCd =
1

2
(βdo)

T (Sd + λI)βdo +
C

2

N∑
i=1

∥∥edi∥∥22
Subject to : (βdo)

Tφdi = r − edi , i = 1, 2, ..., N.

(5.18)

By using Representer Theorem [103], βdo is expressed as a linear combination of

the training data representation Φd and reconstruction weight vector W d
o :

βdo = ΦdW d
o . (5.19)

The scatter matrix Sd encodes the variance information at dth layer, and is given

by:

Sd = ΦdLd(Φd)T . (5.20)

Now, by using (5.19) and (5.20), the minimization criterion in (5.18) is reformulated

as follows:

Minimize
W d

o ,e
d
i

: £GMKOCd =
1

2
(W d

o )T (Φd)T (ΦdLd(Φd)T + λI)ΦdW d
o +

C

2

N∑
i=1

∥∥edi∥∥22
Subject to : (W d

o )T (Φd)Tφdi = r − edi , i = 1, 2, ..., N.

(5.21)

Further, we substitute Kd = (Φd)TΦd, and kdi = (Φd)Tφdi (where the individ-

ual elements of kdi equal to kdij = (φdi )
Tφdj , j = 1, 2, . . . , N) in (5.21). Now, the

optimization problem in (5.21) can be reformulated as follows:

Minimize
W d

o ,e
d
i

: £GMKOCd =
1

2
(W d

o )T (KdLdKd + λKd)W d
o +

C

2

N∑
i=1

∥∥edi∥∥22 ,
Subject to : (W d

o )Tkdi = r − edi , i = 1, 2, ..., N.

(5.22)
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The Lagrangian relaxation of (5.22) is given below:

£GMKOCd =
1

2
(W d

o )T (KdLdKd + λKd)W d
o

+
C

2

N∑
i=1

∥∥edi∥∥22 − N∑
i=1

αdi ((W
d
o )Tkdi − r + edi ),

(5.23)

where αd = {αdi }, i = 1, 2 . . . N , is a Lagrangian multiplier. In order to optimize

(5.23), we compute its derivatives as follows:

∂£GMKOCd

∂W d
o

= 0⇒W d
o = (LdKd + λI)−1αh, (5.24)

∂£GMKOCd

∂edi
= 0⇒ Ed =

1

C
αh, (5.25)

∂£GMKOCd

∂αdi
= 0⇒ (W d

o )TKd = r−Eh. (5.26)

The weight vector W d
o is obtained by substituting (5.25) and (5.26) into (5.24), and

is given by:

W d
o =

(
Kd +

1

C
LdKd +

λ

C
I

)−1
r. (5.27)

Now, βdo is derived by substituting (5.27) into (5.19):

βdo = Φd

(
Kd +

1

C
LdKd +

λ

C
I

)−1
r. (5.28)

The predicted output of the final layer (i.e., dth layer) of GMKOC for training

samples is calculated as follows:

Ô = (Φd)Tβdo = (Φd)TΦdW d
o = KdW d

o , (5.29)

where Ô is the predicted output for training data.

After completing the training process and getting the predicted output of the

training data, a threshold is required to decide whether any sample is an outlier or

not. Two types of threshold criteria (θ1 and θ2) are discussed in the next section.
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5.1.3 Decision Function

Two types of thresholds namely, θ1 and θ2, are employed with the proposed meth-

ods, which are determined as follows:

(i) For θ1:

Step I We calculate the distance between the predicted value of the ith training

sample and r, and store in a vector, Λ = {Λi} and i = 1, 2, ..., N , as

follows:

Λi =
∣∣∣Ôi − r

∣∣∣ . (5.30)

Step II After storing all distances in Λ as per (5.30), we sort these distances

in decreasing order and denoted by a vector Λdec. Further, we reject

few percent of training samples based on the deviation. Most deviated

samples are rejected first because they are most probably far from the

distribution of the target data. The threshold is decided based on these

deviations as follows:

θ1 = Λdec(bν ∗Nc), (5.31)

where 0 < ν ≤ 1 is the fraction of rejection of training samples for

deciding threshold value. N is the number of training samples and b c

denotes the floor operation.

(ii) For θ2: We select threshold (θ2) as a small fraction of the mean of the predicted

output:

θ2 = (
⌊
ν ∗mean(Ô)

⌋
), (5.32)

where 0 < ν ≤ 1 is the fraction of rejection for deciding threshold value.

Training process is completed after getting a threshold value by either using θ1 or

θ2. Afterwards, during testing, a test vector xp is fed to the trained multi-layer

architecture and its output Ôp is obtained. Further, compute Λ̂p for any one types of

threshold as follows:
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For θ1, calculate the distance (Λ̂p) between the predicted value Ôp of the pth testing

sample and r as follows:

Λ̂p =
∣∣∣Ôp − r

∣∣∣ . (5.33)

For θ2, calculate the distance (Λ̂) between the predicted value Ôp of the pth testing

sample and mean of the predicted values obtained after training as follows:

Λ̂p =
∣∣∣Ôp −mean(Ô)

∣∣∣ . (5.34)

Finally, xp is classified based on the following rule:

xp belongs to

Target class, If Λ̂p ≤ Threshold

Outlier, otherwise.
(5.35)

The complete training steps followed by GMKOC are described in Algorithm 5.1.

Overall, we propose 8 variants using 2 types of threshold criteria (viz., θ1 and θ2)

and 4 types of Laplacian graphs (viz., Laplacian eigenmaps (LE) [127], locally linear

embedding (LLE) [172], linear discriminant analysis (LDA) [129], clustering-based

LDA (CDA) [131]). For generating the names of these 8 variants, we concatenate the

name of the Laplacian graph and types of threshold criteria with the name of the

proposed method GMKOC. Those 8 variants are GMKOC-LE θ1, GMKOC-LE θ2,

GMKOC-LLE θ1, GMKOC-LLE θ2, GMKOC-LDA θ1, GMKOC-LDA θ2, GMKOC-

CDA θ1, and GMKOC-CDA θ2.

5.2 Experiments

In this chapter, we follow the same experimental setup and datasets, as men-

tioned in Section 3.2 of Chapter 3. In order to compare our proposed methods (viz.,

AEKOC (Chapter 3), MKOC (Chapter 4), and GMKOC) with the existing meth-

ods, we have conducted experimentation on various existing state-of-the-art kernel-

based OCC methods, such as (a) 4 variants of KRR-based Graph-Embedding method

GKOC [8] viz., GKOC-LE, GKOC-LLE, GKOC-LDA, and GKOC-CDA, (b) 4 with-
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Algorithm 5.1 Graph-Embedded Multi-layer KRR-based One-class classification:
GMKOC

Input: Training setX, regularization parameter (C), Graph regularization parameter

(λ), non-linear feature map (Φ), number of layers (d)

Output: Target class or Outlier

1: Initially, X0 = X

2: for h = 1 to d do

3: First Phase:

4: if h < d then

5: Pass Xh−1 as an input to hth GKAE.

6: Train the GKAE as per (5.11).

7: Compute the triplet (Xh, βha , S
h) during training of hth GKAE.

8: Transformed output Xh is computed from the current layer and pass it as

the input to the next layer, i.e., (h+ 1)th, in the hierarchy.

9: Second Phase:

10: else

11: Train final layer i.e. dth layer for one-class classification.

12: Output of (d − 1)th Auto-Encoder is passed as an input to the one-class

classifier at dth layer.

13: Train the dth layer by GMKOCd as per 5.22

14: end if

15: end for

16: Compute a threshold either θ1 (5.31) or θ2 (5.32).

17: At final step, whether a new input is outlier or not, decides based on the rule

discussed in 5.35.
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out Graph-Embedding methods viz., OCSVM [1], SVDD [1], KPCA [4], and KOC [7].

For all existing methods, we have used threshold criterion θ1 as mentioned in their

corresponding paper. The proposed methods MKOC θ1, GMKOC-LE θ1, GMKOC-

LLE θ1, GMKOC-LDA θ1, and GMKOC-CDA θ1 are multi-layer version of the exist-

ing single hidden layer-based classifiers KOC, GKOC-LE, GKOC-LLE, GKOC-LDA,

and GKOC-CDA, respectively. Overall, performance among 19 variants of one-class

classifier is presented next.

Performance of 19 variants of one-class classifiers in terms of ηg are presented in

Table 5.1. The best ηg values are kept in bold in this table. After analyzing this table,

it is observed that GMKOC-CDA θ2 yields the best ηg for the maximum number of

datasets, i.e., 4 out of 23 datasets. Table 5.2 shows that number of datasets with the

best ηg value for each classifier. In this table, proposed multi-layer classifiers from this

chapter (with Graph-Embedding) and previous chapter (without Graph-Embedding)

collectively yield the best results for 20 out of 23 datasets. Out of 20 best results, the

proposed Graph-Embedded multi-layer classifier’s variants collectively yield the best

results for 17 datasets. Existing classifiers yield the best results for only 3 out of 23

datasets. These existing classifiers are single hidden layer-based one-class classifiers.

Therefore, it can be stated that multi-layer classifiers have clearly outperformed single

hidden layer-based classifiers for most of the datasets. In Table 5.2, any one classifier

yields the best ηg for maximum 17.39% of datasets. Hence, we can not declare any

one classifier as the best classifier just by looking at the best ηg value in Table 5.1.

We need some other performance criteria to decide the best performing classifier. As

per discussion in Chapter 3, we compute three criteria [167] for further analysis: (i)

average of ηg (ηm) (ii) Friedman test (F-score and p-value) (iii) Friedman rank (ηf ).

We analyze the performance of 19 classifiers based on these three criteria as follows:

(i) We compute ηm for analyzing the combined performance of the classifier. ηm

value of each classifier is available in the last row of Table 5.1. It is also provided

in Table 5.3(a) in decreasing order of ηm. When we compare ηm values in this

table, it is observed that all multi-layer classifiers yield better results compared

to their corresponding single hidden layer-based version. Moreover, all the pro-
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Table 5.1: Performance in terms of ηg for 23 datasets
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Table 5.2: Number of datasets for which each one-class classifier yields the best ηg

One-class
Classifiers

Number of datasets
with the best ηg
value

GMKOC-CDA θ2 4

GMKOC-CDA θ1 3

GMKOC-LLE θ2 3

MKOC θ1 3

GMKOC-LDA θ2 2

GMKOC-LE θ2 2

GMKOC-LLE θ1 2

SVDD 2

GMKOC-LE θ1 1

MKOC θ2 1

KOC 1

OCSVM 1

GMKOC-LDA θ1 0

KPCA 0

GKOC-LDA 0

GKOC-CDA 0

GKOC-LE 0

GKOC-LLE 0

AEKOC 0
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Table 5.3: Friedman Rank (ηf ) and mean of ηg (ηm)

5.3(a) In decreasing order of ηm

ηf ηm

GMKOC-LLE θ2 8.04 76.35

GMKOC-CDA θ1 7.13 76.06

GMKOC-CDA θ2 6.54 75.99

GMKOC-LLE θ1 9.50 75.74

MKOC θ1 7.85 75.35

GMKOC-LDA θ1 7.41 75.33

GMKOC-LE θ1 7.93 74.99

GMKOC-LE θ2 8.74 74.33

MKOC θ2 10.13 74.07

GMKOC-LDA θ2 8.89 73.94

AEKOC 11.13 73.79

KOC 10.78 73.73

OCSVM 10.41 73.65

SVDD 10.59 73.52

GKOC-CDA 11.93 73.34

GKOC-LE 11.87 73.09

GKOC-LDA 13.07 72.72

GKOC-LLE 14.04 72.14

KPCA 14.00 69.28

5.3(b) In increasing order of ηf

ηf ηm

GMKOC-CDA θ2 6.54 75.99

GMKOC-CDA θ1 7.13 76.06

GMKOC-LDA θ1 7.41 75.33

MKOC θ1 7.85 75.35

GMKOC-LE θ1 7.93 74.99

GMKOC-LLE θ2 8.04 76.35

GMKOC-LE θ2 8.74 74.33

GMKOC-LDA θ2 8.89 73.94

GMKOC-LLE θ1 9.50 75.74

MKOC θ2 10.13 74.07

OCSVM 10.41 73.65

SVDD 10.59 73.52

KOC 10.78 73.73

AEKOC 11.13 73.79

GKOC-LE 11.87 73.09

GKOC-CDA 11.93 73.34

GKOC-LDA 13.07 72.72

KPCA 14.00 69.28

GKOC-LLE 14.04 72.14
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posed classifiers (Graph-Embedded and without Graph-Embedded) outperform

all the existing classifiers (Graph-Embedded and without Graph-Embedded).

We find an interesting observation that GMKOC-CDA θ2 obtains 3rd position

in Table 5.2 despite yielding the best ηg for maximum number of datasets. Over-

all, GMKOC-LLE θ2 attains a top position in the table and yields the best ηm

among 19 classifiers.

(ii) Although the proposed Graph-Embedded classifier’s variants attain top 4 posi-

tions among 19 variants of classifiers in Table 5.3(a); however, we need to verify

the outcomes of the proposed and existing classifiers statistically. For this pur-

pose, we conduct a non-parametric Friedman test [166] similar to discussed in

Section 3.2 of Chapter 3. Friedman test mainly computes three components viz.,

p-value, F-score, and critical value. The computed p-value, F-score value and

critical value are 8.6508e−08, 68.33 and 28.87, respectively. Since the computed

F-score value is higher than the critical value, and the p-value is significantly

lesser than the tolerance level of 0.05, we reject the null hypothesis with 95%

of confidence. Therefore, it is concluded that the outcomes presented in this

chapter are statistically significant.

(iii) Further, we compute Friedman Rank (ηf ) [166] for each classifier as discussed in

Section 2.8 of Chapter 2. We consider ηf as the final decision criteria to decide

the rank of any classifiers. In Table 5.3(b), we present ηf along with ηm of each

classifier in increasing order of ηf . In this table, GMKOC-LLE θ2 does not attain

top position in spite of the best ηm in Table 5.3(a). ηf value of GMKOC-LLE θ2

is significantly lesser (1.5) than the best ηf value. GMKOC-CDA θ2 attains top

position among 19 variants of classifiers. Overall, GMKOC variants have outper-

formed all existing classifiers in terms of both criteria i.e., ηf and ηm. Moreover,

all multi-layer classifiers yield better ηf compared to their corresponding sin-

gle hidden layer-based version. Among four types of used Laplacian graphs,

CDA-based GMKOC variants (GMKOC-CDA θ1 and GMKOC-CDA θ2) per-

form better than the other variants of GMKOC.
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5.3 Summary

This chapter has proposed a Graph-Embedded multi-layer method for OCC (i.e.,

GMKOC), which follows a non-iterative approach to learning. Similar to MKOC, it has

combined the concept of two different frameworks, i.e., boundary and reconstruction,

in sequential order. In order to construct the Graph-Embedded multi-layer architec-

ture, we have proposed a GKAE. It presents a better representation of data compared

to KAE, which has resulted in better generalization performance of GMKOC com-

pared to MKOC. Overall, we have proposed eight variants using 2 types of threshold

criteria and 4 types of Laplacian graphs. Three out of eight variants have obtained

better ηm and ηf values compared to all previously (i.e., in previous chapters of this

thesis) proposed and existing one-class classifiers. We have statistically verified that

the outcomes presented in this chapter are statistically significant, with 95% of confi-

dence. Moreover, the p-value is significantly lesser than the tolerance level of 0.05.

In this and previous chapters, we have combined various kernels in sequential order,

and obtained better results compared to single hidden layer-based one-class classifier.

In the later chapter, we combine multiple kernels simultaneous instead of sequentially

with hyperplane and hypersphere-based two distinct optimization problems.
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Chapter 6

Localized Multiple Kernel Learning for

One-class Classification

In the previous chapter, we have stacked multiple kernels in sequential order and

formed a multi-layer architecture for OCC. This chapter presents an optimization

problem for data-driven anomaly detection in which a convex combination of ker-

nels is used. Here, all kernels are optimized in a single optimization problem, and

weights are assigned locally based on the local region of the data. We develop two

types of MKL-based one-class classifiers by taking OCSVM and SVDD as base clas-

sifiers. OCSVM and SVDD-based proposed classifiers are referred to as localized

multiple kernel anomaly detection (LMKAD) and localized multiple kernel support

vector data description (LMSVDD), respectively. Both methods are based on the

boundary framework. The proposed LMKAD and LMSVDD are discussed in Section

6.1 and 6.2, respectively.

6.1 Localized Multiple Kernel Learning for

Anomaly Detection: LMKAD

In this section, we propose Localized Multiple Kernel Anomaly Detection

(LMKAD). In LMKAD, weights are assigned to kernel, based on the locality present

in the data. We intend to give more weights to those kernel functions, which best
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match the underlying locality of the data in different regions of the input space. We

modify the decision function of OCSVM (mentioned in (2.7) of Chapter 2) as follows:

f(x) =

p∑
m=1

ηm(x)〈ωm,φm(x)〉 − ρ, (6.1)

where ω is the weight coefficients, φ(.) represents the mapping in the feature space, ρ

denotes bias term, p denotes number of kernels, and ηm(x) is the weight corresponding

to each kernel. Here, ηm(x) is called as gating function. The ηm(x) is defined by the

input x, and parameters of the gating function. These parameters learn from the

data during optimization, as shown later in this section. We rewrite the conventional

OCSVM optimization problem with our new decision function and obtain the following

primal optimization problem:

Minimize
ωm,ηm(x),ξ,ρ

:
1

2

p∑
m=1

ωTmωm − ρ+
1

νN

N∑
i=1

ξi

Subject to :

p∑
m=1

ηm(x)〈ωm,φm(x)〉≥ ρ− ξi ∀i,

ξi≥ 0 ∀i,

(6.2)

where ν is the rate of rejection, N is the total number of training samples, and ξi

is the slack variable as usual. We now need to solve this optimization problem for

the above parameters. But, the minimization problem in (6.2) is not convex because

non-linearity is introduced in the separation constraints due to the gating function.

It might lead to suboptimal global solution [12]. Therefore, we do not solve this opti-

mization problem directly, but use a two-step alternate optimization scheme inspired

by Rakotomamonjy et al. [50] and Gonen et al. [12]. This optimization scheme finds

the values of the parameters of the gating function (ηm(x)) and the parameters of the

decision function.

Before starting the optimization procedure, we initialize the parameters of ηm(x)

by some random values. Then, in the first step of the procedure, we treat ηm(x) as a
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constant and solve the optimization problem (6.2) for ω, ξ and ρ. Note that if we treat

ηm(x) as a constant, this step is essentially the same as solving conventional OCSVM

under certain conditions as we will explain later. Solving the conventional OCSVM

returns the optimal value of the objective function and the Lagrange multipliers. In

the second step, we update the values of the parameters of ηm(x) using gradient

descent on the objective function. The updated parameters define a new ηm(x), which

is used for the next iteration. The above two steps are repeated until convergence.

For a fixed ηm(x), the Lagrangian of the primal problem in (6.2) is written as:

LD =
1

2

p∑
m=1

ωTmωm +
N∑
i=1

( 1

νN
− βi − αi

)
ξi − ρ−

N∑
i=1

αi

( p∑
m=1

ηm(xi)〈ωm,φm(xi)〉 − ρ
)
,

(6.3)

where αi ≥ 0 and βi ≥ 0 are the Lagrange multipliers.. Further, we compute the

derivatives of the Lagrangian LD with respect to the variables in (6.2) as follows:

∂LD
∂ωm

= 0⇒ ωm =
N∑
i=1

αiηm(xi)φm(xi) ∀m, (6.4)

∂LD
∂ρ

= 0⇒
N∑
i=1

αi = 1, (6.5)

∂LD
∂ξi

= 0⇒ 1

νN
= βi + αi. (6.6)

By substituting (6.4), (6.5), and (6.6) into (6.3), we obtain the dual problem of (6.2)

as follows:

Maximize
α

: J(η) = −1

2
αTKα

Subject to : 0 ≤αi ≤ 1 i = 0, . . . , N,

Subject to :
N∑
i

αi= 1,

(6.7)

where kij = Kη(xi, xj) is a weighted kernel function, and K is the kernel matrix

where kij ∈ K generates an element of K between ith and jth sample. Here, the

weighted kernel function is defined as:

Kη(xi, xj) =

p∑
m=1

ηm(xi)〈φm(xi),φm(xj)〉ηm(xj). (6.8)
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The objective function of the dual is termed as a function of J(η). The dual formula-

tion is exactly the same as the conventional OCSVM formulation with kernel function

Kη(xi, xj). In (6.8), multiplying the kernel matrix with a non-negative value will still

give a positive definite matrix [173]. Note that the locally combined kernel function

will, therefore, satisfy the Mercer’s condition [174] if the gating function is non-negative

for both the input instances. This can be easily ensured by picking a non-negative

ηm(x). In order to assign the weight to the different kernels based on the training

data, a gating function is used.

In the above formulations of LMKAD, the objective value of the dual formulation

(6.7) is equal to the objective value of the primal (6.2). By using the dual formulation

in (6.7), gating function is trained and ηm(x) is computed. For training it, the gradient

of the objective function of the dual (i.e., J(η)) is computed with respect to the

parameters of the gating function. In this way, we obtain new parameter values of

the gating function. Now substitute the new value of ηm(x) in (6.8), which gives

us the new Kη(xi, xj). This new Kη(xi, xj) is used to solve the dual formulation

(6.7). We again update the value of the gating function parameters and repeat until

convergence. The convergence of the algorithm is determined by observing the change

in the objective function in (6.7). When the change in the objective of the current and

previous iteration is less than some predefined very small number; then, it converges.

Step size for every iteration is computed using the line search approach [175]. The

entire algorithm is summarized in Algorithm 6.1.

Algorithm 6.1 LMKAD algorithm

1: Initialize the values of gating function parameters vm and vm0 by random values
for each mth kernel, where m = 1, 2, . . . , p

2: do
3: Calculate ηm using vtm and vtm0

4: Calculate Kη(xi, xj) using the gating function
5: Solve conventional OCSVM with Kη(xi, xj)
6: v

(t+1)
m ⇐ v

(t)
m − µ(t) ∂J(η)

∂vm
∀m

7: v
(t+1)
m0 ⇐ v

(t)
m0 − µ(t) ∂J(η)

∂vm0
∀m

8: while Not converged
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Once the algorithm converges, and the final ηm(x) and the Lagrange multipliers

are obtained, the decision function can be rewritten as:

f(x) =
N∑
i=1

p∑
m=1

αiηm(x)Km(x,xi)ηm(xi)− ρ. (6.9)

The sign of this decision function tells us whether the given input is target or outlier.

We also compute the average error by computing the difference between the target

and predicted value on the training data. Then we set the bias term to this mean

value.

In the above discussion, the procedure of weight assignment using a gating func-

tion is discussed in detail. We have discussed in the algorithm of LMKAD that the

derivative of the gating function needs to be computed for the local assignment of

the weight to each kernel. Three types of gating functions [12, 146] are used in this

chapter for our experiments, namely Softmax, Sigmoid, and Radial Basis Function.

These gating functions and their derivatives are provided in the following sections.

6.1.1 Softmax Function

ηm(x) =
exp(〈vm,x〉+ vm0)∑p
℘=1 exp(〈v℘,x〉+ v℘0)

. (6.10)

This function is characterized by the parameters vm0 and vm for mth kernel, where vm0

is bias and vm is weighting vector. In above equation, exp(〈vm,x〉+ vm0) represents

simply e(vmx+vm0) (the same notation is followed for the Sigmoid function). The above

function is called as the Softmax function and ensures that ηm(x) is non-negative.

Note that if we use a constant gating function, the algorithm reduces to that of

MKAD [11], and assigns fixed weights over the entire input space. As per the above

discussion, gradient of the objective function J(η) needs to be calculated with respect

to the parameters of the Softmax gating function (vm0 and vm), which is mentioned

as follows:
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∂J(η)

∂vm0

= −1

2

N∑
i=1

N∑
j=1

p∑
℘=1

αiαjη℘(xi)K℘(xi, xj)η℘(xj)(δ
℘
m − ηm(xi) + δ℘m − ηm(xj)),

(6.11)

∂J(η)

∂vm
= −1

2

N∑
i=1

N∑
j=1

p∑
℘=1

αiαjη℘(xi)K℘(xi, xj)η℘(xj)(xi(δ
℘
m − ηm(xi)) + xj(δ

℘
m − ηm(xj))),

(6.12)

where δ℘m =

1, if m = ℘ ,

0, otherwise.

Once we obtain the updated values of the parameters vm0 and vm, we calculate

the new value of ηm(x) using the gating function.

6.1.2 Sigmoid Function

ηm(x) =
1

1 + exp(−〈vm,x〉 − vm0)
. (6.13)

Again the parameters vm0 and vm characterize the above gating function for mth ker-

nel. Here, The gradients of the objective function J(η) with respect to the parameters

of the sigmoid gating function (vm0 and vm) are:

∂J(η)

∂vm0

= −1

2

N∑
i=1

N∑
j=1

αiαjηm(xi)Km(xi, xj)ηm(xj)(1− ηm(xi) + 1− ηm(xj)),

(6.14)

∂J(η)

∂vm
= −1

2

N∑
i=1

N∑
j=1

αiαjηm(xi)Km(xi, xj)ηm(xj)(xi(1− ηm(xi)) + xj(1− ηm(xj))).

(6.15)
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6.1.3 Radial Basis Function (RBF)

ηm(x) =
e−
‖x−µm‖22

σ2
m∑p

℘=1 e
− ‖x−µ℘‖22

σ2
℘

, (6.16)

where µm is the center and σm gives the spread of the local region. Similar as above,

the gradients of the objective function J(η) with respect to the parameters of the RBF

gating function (µm and σm) are:

∂J(η)

∂µm
=−

N∑
i=1

N∑
j=1

p∑
℘=1

αiαjη℘(xi)K℘(xi, xj)η℘(xj)((xi − µm)(δ℘m − ηm(xi))+

(xj − µm)(δ℘m − ηm(xj)))/σ
2
m,

(6.17)

∂J(η)

∂σm
=−

N∑
i=1

N∑
j=1

p∑
℘=1

αiαjη℘(xi)K℘(xi, xj)η℘(xj)(‖xi − µm‖22(δ℘m − ηm(xi))+

‖xj − µm‖22(δ℘m − ηm(xj)))/σ
3
m,

(6.18)

where δ℘m =

1, if m = ℘ ,

0, otherwise.

6.2 Localized Multiple Kernel Support Vector

Data Description: LMSVDD

In this section, LMSVDD is proposed, which assigns weights based on the un-

derlying locality of the data in different regions of the input space. The intuition

behind these weights assignment is the same as discussed for LMKAD. That is if a

kernel identifies the underlying locality of the data for some specific region; then, more

weight is assigned to that kernel for that specific region of the input space. It is just

different from LMKAD in the way of classification. LMKAD classifies by constructing
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a hyperplane; however, LMSVDD constructs a hypersphere for classification. The de-

cision function of SVDD (mentioned in (2.10) of Chapter 2) is modified for achieving

localization as follows:

f(x) =

p∑
m=1

‖ηm(x)φm(x)− a‖2 −R2, (6.19)

where ηm(x) is the weight corresponding to each kernel, φ(.) is a function which is

mapping data in the higher dimensional feature space, a is a center, and R is a radius

of the hypersphere. This weight is assigned by using a gating function. The ηm(x)

is function of the input x and is defined in terms of the gating function parameters.

Learning of these parameters are performed through an optimization process, which

is described further in this section. By using newly defined decision function in (6.19),

SVDD primal optimization problem in (2.8) can be rewritten for LMSVDD as follows:

Minimize
R,a,ξ,ηm(xi)

: R2 + C
N∑
i=1

ξi

Subject to :

p∑
m=1

‖ηm(xi)φm(xi)− a‖2 ≤ R2 + ξi ,

ξi≥ 0, ∀i ∈ 1, . . . , N,

(6.20)

where N is the total number of training samples, and ξi are the slack variables as

discussed above for SVDD. Now, primal optimization problem of LMSVDD is solved

for the parameters R,a, ξ, and ηm(xi). However, this optimization problem is not

solved directly. For solving this, we use a two-steps alternate optimization scheme as

discussed in Rakotomamonjy et al. [50]. By using this alternate optimization scheme,

the parameter(s) of the gating function (ηm(x)) and the parameter(s) of the decision

function are computed.

Before going for two-steps optimization procedure, ηm(x) is initialized for some

random value. After this, in the first step of the optimization procedure, the primal

optimization problem in (6.20) is solved for R,a, ξ, and ηm(xi) by treating ηm(x)

as a constant. So, if ηm(x) is constant; then, this primal optimization problem can

108



be solved similar as vanilla SVDD. When we solve vanilla SVDD; then, it mainly

yields two optimal values viz., the Objective function and the Lagrange multiplier. In

the second step of this optimization, the parameters of ηm(x) are updated by

employing gradient descent on the objective function with respect to the parameters

of the gating function ηm(x). Then, we compute a new ηm(x) by using the updated

parameters and this is used in the next iteration. These two steps are repeated until

convergence. For a fixed ηm(x), the Lagrangian of the primal problem in (6.20) can

be written as:

LD(R,a, ξ, ηm(xi), αi, βi) = R2 + C

N∑
i=1

ξi+

N∑
i=1

αi

( p∑
m=1

‖ηm(xi)φm(xi)− a‖2 −R2 − ξi
)
−

N∑
i=1

βiξi,

(6.21)

where αi ≥ 0 and βi ≥ 0 are the Lagrange multipliers. Now, the derivatives of the LD

is computed with respect to the variables in (6.20) as follows:

∂LD
∂a

= 0⇒ a =
N∑
i=1

αiηm(xi)φm(xi) ∀m, (6.22)

∂LD
∂R

= 0⇒
N∑
i=1

αi = 1, (6.23)

∂LD
∂ξi

= 0⇒ C = αi + βi. (6.24)

Substituting, (6.22), (6.23), and (6.24) into (6.21), following dual problem is obtained:

Maximize
α

: J(η) =
N∑
i=1

αikii −αTKα

Subject to : 0 ≤αi ≤ C i = 0, . . . , N

Subject to :
N∑
i

αi= 1,

(6.25)

where α = [α1, α2, . . . , αN ]T , and kij = Kη(xi, xj) is a weighted kernel function, and

K is the kernel matrix where kij ∈K generates an element of K between ith and jth
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sample. Here, the weighted kernel function is defined as:

Kη(xi, xj) =

p∑
m=1

ηm(xi)〈φm(xi),φm(xj)〉ηm(xj). (6.26)

The dual objective function in (6.25) is written as a function of J(η). Now, it can be

easily seen from (6.25) and (2.9) that the dual formulation of SVDD and LMSVDD

is identical except the kernel function Kη(xi, xj) formulation. This function always

yields non-negative value because the multiplication of a kernel matrix with some

non-negative value always yields a positive definite matrix. It can be analyzed from

(6.26) that the local combination of the kernel is constructed by multiplying two input

instances in terms of gating function. If the gating function ηm(x) yields non-negative

values for both input instances; then, the Mercer’s condition will be satisfied. We have

ensured this by always selecting a non-negative value of ηm(x). Overall, by using a

gating function ηm(x), we assign a set of weights to various kernels on the training

data.

In the above formulations of LMSVDD, objective value of the primal and dual for-

mulation is equal as strong duality holds between primal and dual formulation[176].

Therefore, the dual formulation in (6.25) is used instead of primal formulation to train

a gating function ηm(x), and value of ηm(x) is computed. Now the computed new

value of ηm(x) is substituted in (6.26) and obtain a updated value of Kη(xi, xj).

This Kη(xi, xj) is used to solve the dual formulation in (6.25). The values of the

ηm(x) parameters are updated, and we repeat this procedure until the convergence.

The convergence of the algorithm is decided based on the change in the value of the

objective function in (6.25). Above discussed procedure is summarized in Algorithm

6.2. After the convergence of the algorithm, the final ηm(x) and the α are obtained.

110



Algorithm 6.2 LMSVDD algorithm

1: Initialize the values of vm and vm0 by random values for each mth kernel, where
m = 1, 2, . . . , p

2: do
3: Calculate ηm using vtm and vtm0

4: Calculate Kη(xi, xj) using the gating function
5: Solve conventional SVDD with Kη(xi, xj)
6: v

(t+1)
m ⇐ v

(t)
m − µ(t) ∂J(η)

∂vm
∀m

7: v
(t+1)
m0 ⇐ v

(t)
m0 − µ(t) ∂J(η)

∂vm0
∀m

8: while Not converged

The decision function of SVDD can be modified for LMSVDD as follows:

f(x) =

p∑
m=1

‖ηm(x)φm(x)− a‖2 −R2

=

p∑
m=1

ηm(x)(φm(x))Tφm(x)ηm(x) +αTKα−

2
N∑
i=1

p∑
m=1

αiηm(x)Km(x, xi)ηm(xi)−R2.

(6.27)

The sign of this decision function tells us whether the given input is target or outlier.

If f(x) ≥ 0; then, x is an outlier, otherwise, a normal sample. Here, R2 is a radius

of the sphere and calculated as follows:

R2 =

p∑
m=1

ηm(xα)(φm(xα))Tφm(xα)ηm(xα) +αTKα−

2
N∑
i=1

p∑
m=1

αiηm(xi)Km(xi, xα)ηm(xα).

(6.28)

where xα is support vectors.

In the above discussion, the procedure of weight assignment using a gating function

is discussed in detail. We have discussed in the algorithm of LMSVDD that the

derivative of the gating function needs to be computed for the local assignment of

the weight to each kernel. Three types of gating functions [12, 146] are used in this

chapter for our experiments, namely Softmax, Sigmoid, and Radial Basis Function.
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Expressions of these gating functions are already discussed in Section 6.1. Derivatives

of these gating functions for LMSVDD are provided in the following sections.

6.2.1 Softmax Function

Softmax function is expressed in (6.10) during discussion of LMKAD. This function

is characterized by the parameters vm0 and vm. This function ensures that ηm(x)

is non-negative. As we have seen in the above discussion that the gradient of the

objective function J(η) needs to be calculated with respect to the parameters of the

Softmax gating function (vm0 and vm). These derivatives are mentioned as follows:

∂J(η)

∂vm0

=
N∑
i=1

p∑
℘=1

αiη℘(xi)K℘(xi, xi)η℘(xi)× (δ℘m − ηm(xi) + δ℘m − ηm(xi))

−
N∑
i=1

N∑
j=1

p∑
℘=1

αiαjη℘(xi)K℘(xi, xj)η℘(xj)(δ
℘
m − ηm(xi) + δ℘m − ηm(xj)),

(6.29)

∂J(η)

∂vm
=

N∑
i=1

p∑
℘=1

αiη℘(xi)K℘(xi, xi)η℘(xi)× (xi(δ
℘
m − ηm(xi)) + xi(δ

℘
m − ηm(xi)))

−
N∑
i=1

N∑
j=1

p∑
℘=1

αiαjη℘(xi)K℘(xi, xj)η℘(xj)(xi(δ
℘
m − ηm(xi)) + xj(δ

℘
m − ηm(xj))),

(6.30)

where δ℘m =

1, if m = ℘

0, otherwise.

Once we obtain the updated values of the parameters vm0 and vm, we calculate

the new value of ηm(x) using the gating function.

6.2.2 Sigmoid Function

Sigmoid function is expressed in (6.13) during discussion of LMKAD. The param-

eters vm0 and vm characterize this gating function. The gradients of the objective
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function J(η) with respect to the parameters of this gating function are:

∂J(η)

∂vm0

=
N∑
i=1

αiηm(xi)Km(xi, xi)ηm(xi)× (1− ηm(xi) + 1− ηm(xi))

−
N∑
i=1

N∑
j=1

αiαjηm(xi)Km(xi, xj)ηm(xj)(1− ηm(xi) + 1− ηm(xj)),

(6.31)

∂J(η)

∂vm
=

N∑
i=1

αiηm(xi)Km(xi, xi)ηm(xi)× (xi(1− ηm(xi)) + xi(1− ηm(xi)))

−
N∑
i=1

N∑
j=1

αiαjηm(xi)Km(xi, xj)ηm(xj)(xi(1− ηm(xi)) + xj(1− ηm(xj))).

(6.32)

6.2.3 Radial Basis Function (RBF)

RBF function is expressed in (6.16) during discussion of LMKAD. This function is

characterized by the parameters µm and σm. Here, µm is the center and σm gives the

spread of the local region. Similar as above, the gradients of the objective function

J(η) with respect to the parameters of the gating function are:

∂J(η)

∂µm
=2

( N∑
i=1

p∑
℘=1

αiη℘(xi)K℘(xi, xi)η℘(xi)((xi − µm)× (δ℘m − ηm(xi))+

(xi − µm)(δ℘m − ηm(xi)))/σ
2
m −

N∑
i=1

N∑
j=1

p∑
℘=1

αiαjη℘(xi)K℘(xi, xj)η℘(xj)((xi−

µm)× (δ℘m − ηm(xi)) + (xj − µm)(δ℘m − ηm(xj)))/σ
2
m

)
,

(6.33)

∂J(η)

∂σm
=2

( N∑
i=1

p∑
℘=1

αiη℘(xi)K℘(xi, xi)η℘(xi)(‖xi − µm‖22 × (δ℘m − ηm(xi))+

‖xi − µm‖22(δ℘m − ηm(xi)))/σ
3
m −

N∑
i=1

N∑
j=1

p∑
℘=1

αiαjη℘(xi)K℘(xi, xj)η℘(xj)(‖xi−

µm‖22 × (δ℘m − ηm(xi)) + ‖xj − µm‖22(δ℘m − ηm(xj)))/σ
3
m

)
,

(6.34)
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where δ℘m =

1, if m = ℘

0, otherwise.

Overall, we propose 12 variants (6 variants of LMKAD, and 6 variants of LMSVDD)

using different types of kernels and gating functions. Three types of commonly used

kernels are used, namely linear (l), polynomial (p), and Gaussian (g) kernel, . Many

combinations are possible with these kernels, such as ppp, ggg, ppl, gpl, and gpp. In

our discussion, we use only those two kernel combinations (gpl and gpp), which exhibit

better performance. In a multi-kernel-based classifier, these kernel combinations can

be tied up with any of the above three discussed gating functions, such as Softmax

(So), Sigmoid (S), and RBF (R). By following these combinations, we generate 12 vari-

ants of the proposed classifiers LMKAD and LMSVDD. The naming convention for the

proposed variants is as follows: we combine the kernel name with the gating function

name, and mention in a bracket with the proposed method name. By following this

naming convention, 6 variants of LMKAD, and 6 variants of LMSVDD are generated,

namely LMKAD(S gpl), LMKAD(S gpp), LMKAD(So gpl), LMKAD(So gpp),

LMKAD(R gpl), LMKAD(R gpp), LMSVDD(S gpl), LMSVDD(S gpp),

LMSVDD(So gpl), LMSVDD(So gpp), LMSVDD(R gpl), and LMSVDD(R gpp).

6.3 Experiments

In this chapter, we follow the same experimental setup and datasets, as mentioned

in Section 3.2 of Chapter 3. Until this point in this thesis, we have proposed 23

variants from 5 proposed classifiers (viz., AEKOC (Chapter 3), MKOC (Chapter 4),

GMKOC (Chapter 5), LMKAD, and LMSVDD). In order to compare our proposed

methods with the existing methods, we have conducted experimentation on various

existing state-of-the-art kernel-based OCC methods, such as (a) 8 variants of single

kernel learning methods viz., OCSVM [1], SVDD [1], KPCA [4], KOC [7], GKOC-

LE [8], GKOC-LLE [8], GKOC-LDA [8], and GKOC-CDA [8]. (b) 2 variants of multi-

kernel learning method MKAD viz., MKAD(gpl), MKAD(gpp). Overall, we perform

comparison among 33 kernel-based OCC methods, which is presented next.
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As we are comparing 33 variants of one-class classifiers, hence, it is not possible

to fit all results on a single page. Therefore, we are presenting results in two tables

(Table 6.1 and Table 6.2). The best ηg values are kept in bold in both tables. Table 6.1

contains the results of 12 variants of the 2 proposed methods in this chapter, 4 vanilla

single kernel learning-based classifiers, and 2 variants of vanilla MKL-based classifiers.

After analyzing this table, it is observed that LMSVDD(So gpp) yields the best ηg for

the maximum number of datasets, i.e., 10 out of 23 datasets. Table 6.3 shows that

no. of datasets with the best ηg value for each classifier. This table shows that the

proposed 12 variants of LMKAD and LMSVDD collectively yield the best results for

20 out of 23 datasets. Out of 20 best results, LMKAD-based and LMSVDD-based

variants yield the best results for 6 and 14 datasets, respectively. Existing classifiers

yield the best results for only 3 out of 23 datasets. Out of 3 datasets, MKAD-based

variants yield the best results for 2 datasets. Only one single kernel learning-based

classifier manages to yield the best results for one dataset. The above discussion

shows that the clear dominance of MKL-based classifiers. Overall, it can be stated

that the proposed localized MKL-based classifiers outperform all single and multi-

kernel learning-based existing classifiers for most of the datasets. Furthermore, when

we compare the results of various kernel combinations for the proposed methods in

Table 6.3, gpp kernel combination yields the best outcome among all combinations

for both LMKAD and LMSVDD. The gpp kernel combination attains a top position

with Sigmoid and Softmax gating function for LMKAD and LMSVDD, respectively.

Table 6.2 presents the results of the all proposed methods discussed so far in this

thesis. In this table, AEKOC is a single hidden layer-based classifier, and remaining

all methods either belong to multi-layer or multi-kernel learning. We observe in this

table that LMSVDD(So gpp) is still a top performer and yields the best ηg for the

maximum number of datasets, i.e., 6 out of 23 datasets. Table 6.3 shows that no.

of datasets with the best ηg value for each classifier. MKL-based proposed methods

collectively yield the best results for 17 datasets. It again shows the clear dominance

of MKL-based methods.

In Table 6.2, the best performing classifier LMSVDD(So gpp) yields the best ηg
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Table 6.1: Performance comparison among existing (vanilla single and multi-kernel-
based) and proposed classifiers of this chapter in terms of ηg for 23 datasets
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Table 6.2: Performance comparison among all proposed classifiers until this chapter
in terms of ηg for 23 datasets
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Table 6.3: Number of datasets for which each one-class classifier yields the best ηg

6.3(a) Among existing (vanilla single and
multi-kernel-based) and MKL-based one-class
classifiers

One-class
Classifiers

No. of datasets with
the best ηg value

LMSVDD(So gpp) 10

LMKAD(S gpp) 3

LMKAD(So gpl) 2

LMSVDD(S gpp) 2

MKAD(gpl) 2

LMKAD(S gpl) 1

LMKAD(R gpl) 1

LMSVDD(So gpl) 1

LMSVDD(R gpp) 1

MKAD(gpp) 1

KOC 1

LMKAD(So gpp) 0

LMKAD(R gpp) 0

LMSVDD(S gpl) 0

LMSVDD(R gpl) 0

KPCA 0

OCSVM 0

SVDD 0

6.3(b) Among all proposed one-class classifiers
of this thesis so far

One-class
Classifiers

No. of datasets with
best ηg value

LMSVDD (So gpp) 6

LMKAD (S gpp) 3

LMSVDD (S gpp) 3

GMKOC-LLE θ2 3

LMSVDD (So gpl) 2

LMKAD (S gpl) 1

LMKAD (So gpl) 1

LMKAD (R gpl) 1

GMKOC-CDA θ2 1

GMKOC-LE θ1 1

GMKOC-LE θ2 1

MKOC θ1 1

MKOC θ2 0

AEKOC 0

GMKOC-LDA θ1 0

GMKOC-LDA θ2 0

GMKOC-CDA θ1 0

GMKOC-LLE θ1 0

LMKAD (So gpp) 0

LMKAD (R gpp) 0

LMSVDD (S gpl) 0

LMSVDD (R gpl) 0

LMSVDD (R gpp) 0
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for only 26.09% of datasets. Therefore, we can’t decide the best performer just by

looking at the values of ηg in Table 6.1 and Table 6.2. We need some other performance

criteria to decide the best performing classifier. As per discussion in Chapter 3, we

compute three criteria [167] for further analysis: (i) average of ηg (ηm) (ii) Friedman

test (F-score and p-value) (iii) Friedman rank (ηf ). Based on these three criteria, we

analyze the performance of all 33 variants of the classifiers. The analysis is provided

in the following points:

(i) We compute ηm for analyzing the combined performance of the classifier. ηm

value of each classifier is available in the last row of Table 6.1. It is also provided

in Table 6.4(a) in decreasing order of ηm. When we compare ηm values in this

table, it is observed that LMSVDD(So gpp) attains the top position and yields

a maximum ηm value among all proposed and existing classifiers. The second

position is held by GMKOC-LLE θ2. The difference between the ηm values of the

first and second positions is 1.41, which is quite significant. However, difference

between the ηm values of 2nd and 3rd position of classifier is only 0.09. None

of the LMKAD or MKOC variants or any existing classifiers get a position in

the top 5 classifiers in Table 6.4(a). Similar to the above discussion, gpp kernel

combination with Sigmoid and Softmax gating function again yields the best

results for both proposed classifiers LMKAD and LMSVDD, respectively.

(ii) Although proposed localized multi-kernel based classifiers attain a top position

among all classifiers in Table 6.4(a); however, we need to verify the outcomes

of the proposed and existing classifiers statistically. For this purpose, we con-

duct a non-parametric Friedman test [166] similar as discussed in Section 3.2

of Chapter 3. Friedman test mainly computes three components viz., p-value,

F-score, and critical value. The computed p-value, F-score value and critical

value are 3.8725e− 10, 107.7905 and 46.1943, respectively. Since the computed

F-score value is higher than the critical value, and the p-value is significantly

lesser than the tolerance level 0.05, we reject the null hypothesis, with 95% of

confidence. Therefore, we conclude that the outcomes presented in this chapter

are statistically significant.
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(iii) Further, we compute Friedman Rank (ηf ) [166] for each classifier as discussed

in Section 2.8 of Chapter 2. We consider ηf as the final decision criteria to

decide the rank of any classifiers. In Table 6.4(b), we present ηf along with

ηm of each classifier in increasing order of ηf . In this table, similar as in Ta-

ble 6.4(a), LMSVDD(So gpp) again attains top position among all classifiers.

LMSVDD(R gpl) is the least performer among all multi-layer and multi-kernel

based one-class classifiers. According to ηm criteria, 3 multi-layer classifiers are

in top 5; however, only one multi-layer classifier get position in top 5 as per ηf

criteria.

Overall, the localized mkl-based classifier performed very well according to various

tested criteria. Proposed methods achieve this performance by combining the Gaussian

kernel with less complex kernel like polynomial and linear kernel. It is to be noted

that different types of kernels work in a different part of the datasets. If some part of

the datasets is non-linearly separable; then, the Gaussian kernel will have more weight

in that area compared to the linear kernel. The linear kernel will get more importance

in that area where the dataset is linearly separable. Even some of the kernels might

contain zero weights for a dataset if that is not contributing to classification. Moreover,

localization has helped the classifier in achieving better performance.

6.4 Summary

In this chapter, two OCC methods, LMKAD and LMSVDD, are proposed by taking

OCSVM and SVDD as a base classifier, respectively. These methods are extensions of

MKAD. Proposed methods provide a localized formulation for the multi-kernel learn-

ing method by local assignment of weights to each kernel. Local assignments of weights

are achieved by the training of a gating function and a conventional OCSVM/SVDD

with the combined kernel in tandem. The derived formulation is also shown to be

analogous to conventional OCSVM/SVDD and is solved in a similar fashion using a

LIBSVM solver. Overall, we have proposed 12 variants (6 variants of LMKAD, and

6 variants of LMSVDD) using different types of kernels and gating functions. The
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Table 6.4: Friedman Rank (ηf ) and mean of ηg (ηm) among all discussed proposed
and existing one-class classifiers in this thesis until this chapter

6.4(a) In decreasing order of ηm

ηf ηm

LMSVDD (So gpp) 9.48 77.76

GMKOC-LLE θ2 15.22 76.35

LMSVDD (So gpl) 12.91 76.26

GMKOC-CDA θ1 13.74 76.06

GMKOC-CDA θ2 12.89 75.99

LMKAD (S gpp) 11.02 75.95

GMKOC-LLE θ1 17.72 75.74

LMKAD (S gpl) 13.15 75.52

MKOC θ1 14.72 75.35

GMKOC-LDA θ1 14.43 75.33

GMKOC-LE θ1 15.35 74.99

LMSVDD (R gpp) 16.96 74.35

GMKOC-LE θ2 16.26 74.33

LMKAD (So gpp) 14.74 74.30

LMKAD (So gpl) 14.98 74.25

MKOC θ2 17.83 74.07

GMKOC-LDA θ2 16.59 73.94

AEKOC 18.96 73.79

LMSVDD (S gpp) 15.22 73.77

KOC 20.43 73.73

OCSVM 19.33 73.65

SVDD 19.11 73.52

GKOC-CDA 20.98 73.34

LMKAD (R gpp) 15.17 73.31

LMKAD (R gpl) 15.85 73.17

LMSVDD (R gpl) 19.70 73.09

GKOC-LE 21.57 73.09

LMSVDD (S gpl) 16.91 72.80

GKOC-LDA 22.76 72.72

GKOC-LLE 24.48 72.14

MKAD (gpp) 17.63 70.20

MKAD (gpl) 18.50 69.90

KPCA 26.43 69.28

6.4(b) In increasing order of ηf

ηf ηm

LMSVDD (So gpp) 9.48 77.76

LMKAD (S gpp) 11.02 75.95

GMKOC-CDA θ2 12.89 75.99

LMSVDD (So gpl) 12.91 76.26

LMKAD (S gpl) 13.15 75.52

GMKOC-CDA θ1 13.74 76.06

GMKOC-LDA θ1 14.43 75.33

MKOC θ1 14.72 75.35

LMKAD (So gpp) 14.74 74.30

LMKAD (So gpl) 14.98 74.25

LMKAD (R gpp) 15.17 73.31

GMKOC-LLE θ2 15.22 76.35

LMSVDD (S gpp) 15.22 73.77

GMKOC-LE θ1 15.35 74.99

LMKAD (R gpl) 15.85 73.17

GMKOC-LE θ2 16.26 74.33

GMKOC-LDA θ2 16.59 73.94

LMSVDD (S gpl) 16.91 72.80

LMSVDD (R gpp) 16.96 74.35

MKAD (gpp) 17.63 70.20

GMKOC-LLE θ1 17.72 75.74

MKOC θ2 17.83 74.07

MKAD (gpl) 18.50 69.90

AEKOC 18.96 73.79

SVDD 19.11 73.52

OCSVM 19.33 73.65

LMSVDD (R gpl) 19.70 73.09

KOC 20.43 73.73

GKOC-CDA 20.98 73.34

GKOC-LE 21.57 73.09

GKOC-LDA 22.76 72.72

GKOC-LLE 24.48 72.14

KPCA 26.43 69.28
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proposed LMSVDD-based variant has achieved the best ηm and ηf among all men-

tioned one-class classifiers in this thesis so far. We have statistically verified that the

outcomes presented in this chapter are statistically significant, with 95% of confidence.

Moreover, the p-value is significantly lesser than the tolerance level of 0.05.

At this point in this thesis, we have developed mainly 5 one-class classifiers with

their 23 variants. However, all proposed methods in this thesis so far are unable

to handle two types of data (or information): (i) Privileged information, (ii) Non-

stationary data. Our next two chapters are focused on handling these two types of

data by taking KOC and AEKOC as base classifiers.
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Chapter 7

Learning Using Privileged Information

Framework with Kernel Ridge Regression

for One-class Classification

In the real world, additional/privileged information generally exists with training

samples [13]. However, all proposed classifiers so far in this thesis are unable to uti-

lize this information because they follow the traditional classification setting, which

does not utilize the additional/privileged information in building the classification

model. Vapnik and Vashist [13] addressed this issue by proposing a novel framework,

i.e., learning using privileged information (LUPI). This framework enables classifiers

to utilize privileged information, which is generally ignored by any traditional ma-

chine learning setting-based classifiers but usually present in human learning. LUPI

is briefly discussed in Section 2.6 of Chapter 2. In this chapter, we develop two types

of LUPI framework-based one-class classifiers by taking KOC [7] and AEKOC as base

classifiers. Both proposed methods are referred to as KOC+ and AEKOC+, and one

is the boundary and the other is reconstruction framework-based one-class classifiers,

respectively. Both proposed methods are discussed in the subsequent sections.
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7.1 LUPI framework with KOC: KOC+

In this section, the optimization problem of KOC [7] is modified according to

the LUPI framework, and we develop a minimization problem for KOC+. First, we

provide the minimization problem of KOC because we are using this optimization

problem for developing the proposed classifier.

Let us assume the input training matrix of size N × n is X = {xi}, where

xi = [xi1, xi2, ..., xin], i = 1, 2, ..., N , is the n-dimensional input vector of the ith

training sample. The minimization function of KOC [7] is as follows:

Minimize
β,ei

: £KOC =
1

2
‖β‖2 + C

1

2

N∑
i=1

‖ei‖22

Subject to : φi · β = r − ei, i = 1, 2, ..., N,

(7.1)

where β denotes weight matrix, φ(.) denotes kernel feature mapping function, φi =

φ(xi), and Φ = Φ(X) = [φ1, φ2, ..., φN ]. E is an error vector where E = {ei},

where i = 1, 2, ..., N . Here, r is a vector having all elements equal to r, and r is a real

number, which is set at equal to 1.

Before discussing the minimization problem of KOC+, we make some assumptions

regarding the LUPI framework. We assume that privileged information X∗ = {x∗
i},

where i = 1, 2, ..., N , is available with feature space of X as (xi, x
∗
i ) during training.

However, this information is not available during testing. As suggested in [13], privi-

leged information is incorporated to the optimization problem by modeling the slack

variable ei as so called correction function:

ei = ei(x
∗
i ) = φ∗(x∗

i ).β
∗ = φ∗

i .β
∗, (7.2)

where φ∗(.) is a feature mapping in the privileged space and β∗ is a correction weight.

Now, we substitute (7.2) into (7.1) and modify the optimization problem for KOC+
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as follows:

Minimize
β,β∗,ei

: £KOC+ =
1

2
‖β‖2 + µ

1

2
‖β∗‖2 + C

1

2

N∑
i=1

(φ∗
i · β∗)2

Subject to : φi · β = r − φ∗
i · β∗, i = 1, 2, ..., N,

(7.3)

where ‖β‖2 reflects the capacity of the decision function and ‖β∗‖2 reflects the capacity

of the correction function. Here, µ controls the capacity of these two functions i.e.

controls the relative weight of these two capacities.

By using Representer Theorem [103], β can be expressed as a linear combination

of the training data representation in non-linear feature space Φ and reconstruction

weight vector W :

β = Φ ·W and β∗ = Φ∗ ·W ∗. (7.4)

By substituting the (7.4) into (7.3), following minimization problem is obtained:

Minimize
W ,W ∗,ei

: £KOC+ =
1

2
Φ ·Φ · ‖W ‖2 + µ

1

2
Φ∗ ·Φ∗ · ‖W ∗‖2 +

C
1

2

N∑
i=1

(φ∗
i ·Φ∗

i ·W ∗)2

Subject to : φi ·Φi ·W = r − φ∗
i ·Φ∗

i ·W ∗, i = 1, 2, ..., N.

(7.5)

Further, we substitute K = Φ ·Φ, K∗ = Φ∗ ·Φ∗, ki = φi ·Φi, and k∗
i = φ∗

i ·Φ∗
i in

(7.5). Now, (7.5) is reformulated as follows:

Minimize
W ,W ∗,ei

: £KOC+ =
1

2
K · ‖W ‖2 + µ

1

2
K∗ · ‖W ∗‖2 +

C
1

2

N∑
i=1

(k∗
i ·W ∗)2

Subject to : ki ·W = r − k∗
i ·W ∗, i = 1, 2, ..., N,

(7.6)

where ki ⊆K and k∗
i ⊆K∗.
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The Lagrangian relaxation of (7.6) is written as follows:

Maximize
αi

Minimize
W ,W ∗,ei

: £KOC+ =
1

2
K · ‖W ‖2 + µ

1

2
K∗ · ‖W ∗‖2 +

C
1

2

N∑
i=1

(k∗
i ·W ∗)2 −

N∑
i=1

αi(ki ·W − r + k∗
i ·W ∗),

i = 1, 2, ..., N,

(7.7)

where α = {αi}, i = 1, 2 . . . N , is a Lagrangian multiplier. In order to optimize (7.7),

we compute the partial derivatives of (7.7) as follows:

∂£KOC+

∂W
= 0⇒W = α, (7.8)

∂£KOC+

∂W ∗ = 0⇒ µK∗ ·W ∗ + CK∗ ·W ∗ ·K∗ −α ·K∗, (7.9)

∂£KOC+

∂α
= 0⇒K ·W +K∗ ·W ∗ = r. (7.10)

Now, we substitute (7.8) and (7.10) into (7.9):

µ(r −K ·W ) + C(r −K ·W ) ·K∗ −W ·K∗ = 0. (7.11)

After solving the (7.11), W is obtained as follows:

W = (µK + CK ·K∗ +K∗)−1 · (µI + CK∗) · r. (7.12)

The weight β is obtained by substituting (7.12) into (7.4) as follows:

β = Φ · (µK + CK ·K∗ +K∗)−1 · (µI + CK∗) · r. (7.13)

The predicted output of KOC+ for training samples can be calculated as, Ô =

Φ.β = Φ.Φ.W = K.W , where Ô is the predicted output for training data. After

obtaining the predicted output value, we compute a threshold value based on the

predicted value at the output layer. This threshold value helps in deciding whether a
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sample is an outlier or not. It is discussed next. A threshold (θ1) is employed with

the proposed method, which is determined as follows:

(i) We calculate the distance between the predicted value of the ith training sample

and r, and store in a vector, Λ = {Λi} and i = 1, 2, ..., N , as follows:

Λi =
∣∣∣Ôi − r

∣∣∣ . (7.14)

(ii) After storing all distances in Λ as per (7.14), we sort these distances in decreasing

order and denoted by a vector Λdec. Further, we reject a few percents of training

samples based on the deviation. Most deviated samples are rejected first because

they are most probably far from the distribution of the target data. The threshold

is decided based on these deviations as follows:

θ1 = Λdec(bν ∗Nc), (7.15)

where 0 < ν ≤ 1 is the fraction of rejection of training samples for deciding

threshold value. N is the number of training samples and b c denotes floor

operation.

After determining a threshold value by the above procedure, during testing, a test

vector xp is fed to the trained architecture and its output Ôp is obtained. Further,

compute the distance (Λ̂p), for xp, between the predicted value Ôp of the pth testing

sample and r:

Λ̂p =
∣∣∣Ôp − r

∣∣∣ . (7.16)

Finally, xp is classified based on the following rule:

If Λ̂p ≤ θ1, xp belongs to normal class,

Otherwise, xp is an outlier.
(7.17)
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7.2 LUPI framework with AEKOC: AEKOC+

In this section, the optimization problem of AEKOC is modified according to the

LUPI framework, and we develop a minimization problem for AEKOC+. We propose

AEKOC in Chapter 3 of this thesis. First, we provide the minimization problem of

AEKOC because we are using this optimization problem for developing the proposed

classifier.

Let us assume the input training matrix of size N × n is X = {xi}, where

xi = [xi1, xi2, ..., xin], i = 1, 2, ..., N , is the n-dimensional input vector of the ith

training sample. The minimization function of AEKOC is as follows:

Minimize
βa,ei

: £AEKOC =
1

2
‖βa‖2F + C

1

2

N∑
i=1

‖ei‖22

Subject to : φi · βa = xi − ei, i = 1, 2, ..., N,

(7.18)

where βa denotes weight matrix, φ(.) denotes kernel feature mapping function, φi =

φ(xi), and Φ = Φ(X) = [φ1, φ2, ..., φN ]. E is an error matrix where E = {ei},

where i = 1, 2, ..., N .

Let us do some assumption as per LUPI framework. We assume that privileged

information X∗ = {x∗
i}, where i = 1, 2, ..., N , is available with feature space of X as

(xi, x
∗
i ) during training. However, this information is not available during testing. As

suggested in [13], privileged information is incorporated into the optimization problem

by modeling the slack variable ei as so-called correction function:

ei = ei(x
∗
i ) = φ∗(x∗

i ).β
∗
a = φ∗

i .β
∗
a, (7.19)

. where φ∗(.) is a feature mapping in the privileged space and β∗
a is a correction

weight. Now, we substitute (7.19) into (7.18) and modify the optimization problem

128



for AEKOC+ as follows:

Minimize
βa,β∗

a,ei
: £AEKOC+ =

1

2
‖βa‖2F + µ

1

2
‖β∗

a‖
2
F + C

1

2

N∑
i=1

(φ∗
i · β∗

a)2

Subject to : φi · βa = xi − φ∗
i · β∗

a, i = 1, 2, ..., N,

(7.20)

where ‖βa‖2 reflects the capacity of the decision function and ‖β∗
a‖

2 reflects the ca-

pacity of the correction function. Here, µ controls the capacity of these two functions

i.e. controls the relative weight of these two capacities.

By using Representer Theorem [103], βa can be expressed as a linear combination

of the training data representation in non-linear feature space Φ and reconstruction

weight matrix Wa:

βa = Φ ·Wa and βa∗ = Φ∗ ·W ∗
a . (7.21)

By substituting the (7.21) into (7.20), following minimization problem is obtained:

Minimize
Wa,W ∗

a ,ei
: £AEKOC+ =

1

2
Φ ·Φ · ‖Wa‖2F + µ

1

2
Φ∗ ·Φ∗ · ‖W ∗

a ‖
2
F +

C
1

2

N∑
i=1

(φ∗
i · φ∗

i ·W ∗
a )2

Subject to : φi · φi ·Wa = xi − φ∗
i · φ∗

i ·W ∗
a , i = 1, 2, ..., N.

(7.22)

Further, we substitute K = Φ ·Φ, K∗ = Φ∗ ·Φ∗, ki = φi ·Φi, and k∗
i = φ∗

i ·Φ∗
i in

(7.22). Now, (7.22) is reformulated as follows:

Minimize
Wa,W ∗

a ,ei
: £AEKOC+ =

1

2
K · ‖Wa‖2F + µ

1

2
K∗ · ‖W ∗

a ‖
2
F + C

1

2

N∑
i=1

(k∗
i ·W ∗

a )2

Subject to : ki ·Wa = xi − k∗
i ·W ∗

a , i = 1, 2, ..., N,

(7.23)

where ki ⊆K and k∗
i ⊆K∗.
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The Lagrangian relaxation of (7.23) can be written as follows:

Maximize
αi

Minimize
Wa,W ∗

a ,ei
: £AEKOC+ =

1

2
K · ‖Wa‖2F + µ

1

2
K∗ · ‖W ∗

a ‖
2
F +

C
1

2

N∑
i=1

(k∗
i ·W ∗

a )2 −
N∑
i=1

αi(ki ·Wa − xi + k∗
i ·W ∗

a ),

i = 1, 2, ..., N,

(7.24)

where α = {αi}, i = 1, 2 . . . N , is a Lagrangian multiplier. In order to optimize

(7.24), we compute the partial derivatives of (7.24) as follows:

∂£AEKOC+

∂Wa

= 0⇒Wa = α, (7.25)

∂£AEKOC+

∂W ∗
a

= 0⇒ µK∗ ·W ∗
a + CK∗ ·W ∗

a ·K∗ −α ·K∗ = 0, (7.26)

∂£AEKOC+

∂α
= 0⇒K ·Wa +K∗ ·W ∗

a = X. (7.27)

Now, substitute (7.25) and (7.27) into (7.26):

µ(X −K ·Wa) + C(X −K ·Wa) ·K∗ −Wa ·K∗ = 0. (7.28)

After solving the (7.28), Wa is obtained as follows:

Wa = (µK + CK ·K∗ +K∗)−1 · (µI + CK∗) ·X. (7.29)

The weight βa is obtained by substituting (7.29) into (7.21) as follows:

βa = Φ · (µK + CK ·K∗ +K∗)−1 · (µI + CK∗) ·X. (7.30)

The predicted output of AEKOC+ for training samples can be calculated as follows:

Ôa = Φ.βa = Φ.Φ.Wa = K.Wa, (7.31)
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where Ôa =
{

(Ôa)i
}

, and i = 1, 2, ..., N , is the predicted output for training data.

After obtaining the predicted output value, we compute a threshold value based on the

predicted value at the output layer. This threshold value helps in deciding whether a

sample is an outlier or not. A threshold (θ1) is employed with the proposed method,

which is determined as follows:

(i) We calculate the sum of square error as reconstruction error between the pre-

dicted value of the ith training sample and xi, and store the distance in a vector,

Λ = {Λi} and i = 1, 2, ..., N , as follows:

Λi =
n∑
j=1

((Ôa)ij − xij)2. (7.32)

(ii) After storing all distances in Λ as per (7.32), we sort these distances in decreasing

order and denoted by a vector Λdec. Further, we reject a few percents of training

samples based on the deviation. Most deviated samples are rejected first because

they are most probably far from the distribution of the target data. The threshold

is decided based on these deviations as follows:

θ1 = Λdec(bν ∗Nc), (7.33)

where 0 < ν ≤ 1 is the fraction of rejection of training samples for deciding

threshold value. N is the number of training samples and b c denotes floor

operation.

After determining a threshold value by the above procedure, during testing, a test

vector xp is fed to the trained architecture and its output (Ôa)p is obtained. Further,

compute the distance (Λ̂p), for xp, between the predicted value (Ôa)p of the pth testing

sample and xp:

Λ̂p =
n∑
j=1

((Ôa)pj − xpj)2. (7.34)
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Finally, xp is classified based on the following rule:

If Λ̂p ≤ θ1, xp belongs to normal class,

Otherwise, xp is an outlier.
(7.35)

7.3 Experiments

The proposed KOC+ and AEKOC+ classifiers are experimented on 11 datasets.

We select the same datasets which are used by Zhu and Zhong [37]. We generate

these 11 one-class datasets from 5 multi-class datasets. For a multi-class dataset with

c classes, we alternately select any one class among c classes and treat all samples from

this class as a target positive class. All samples of the remaining (c − 1) classes are

outliers. In this way, if a multi-class dataset had c classes; then, we generate c one-class

datasets. This procedure of generating one-class datasets from multi-class datasets is

the same as discussed in [6]. They made various one-class datasets available on [169].

One more critical factor is the group attribute [37]. The group attribute is privileged

information of the dataset. We select any one attribute at a time from the dataset as a

group attribute. After that, we convert the group attribute into a categorical variable

by imposing some criteria, as discussed in the further sections for each dataset. The

group attributes’ name of each dataset is mentioned in Table 7.1. Suppose, if there

are 2 group attributes with a dataset; then, we perform the experiment corresponding

to each group attribute separately. It is discussed in more detail with each dataset in

the further sections. By following the work of [39], we compute the area under the

precision-recall curve for comparing the performance of the classifiers [177, 178]. It is

also called as average precision score [177, 178]. It summarizes a precision-recall curve

as the weighted mean of precisions achieved at each threshold, with the increase in

recall from the previous threshold used as the weight [177, 178]:

Average precision score =
∑
t

((ηpr)t − (ηre)t−1)(ηpr)t, (7.36)
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Table 7.1: Dataset description

S. No. Datasets Group At-
tributes

# Total
Sam-
ples

#
Tar-
get

#
Out-
lier

Name of
Target
Class

1 Abalone(1) (a) Height
(b) Length
(c) Whole

weight

4177

1407 2770 class 1-8

2 Abalone(2) 1323 2854 class 9-
10

3 Abalone(3) 1447 2730 class 11-
29

4 Haberman
(1)

(a) Age of

patient at
time of

operation
(b) Number of

positive
axillary
nodes

detected

306
225 81 The

patient
survived
5 years
or longer

5 Haberman
(2)

81 225 The
patient
died
within 5
year

6 Heart(1)
(Statlog)

(a) Age

(b) Electrocar-
diographic

(c) Sex

270
150 120 Absence

7 Heart(2)
(Statlog)

120 150 Presence

8 MNIST(1) (a) Poetic
Description

5981
2948 3033 5

9 MNIST(2) 3033 2948 8

10
Wisconsin

Breast
Cancer(1)
(WBC(1))

(a) Clump

Thickness
(b) Uniformity

of Cell
Size

(c) Uniformity
of Cell
Shape

(d) Marginal
Adhesion

683
239 444 Malignant

11
Wisconsin

Breast
Cancer(2)
(WBC(2))

444 239 Benign

where (ηpr)t and (ηre)t are the precision and recall at the tth threshold [177, 178]. We

also compute mean of the average precision score over all datasets for each classifier,

which is denoted as ηmp. In our experiments, we employ Gaussian kernel for all meth-
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ods. Range of the Gaussian kernel parameter is [10−10, 10−9, · · · , 1019, 1020]. Range

of the remaining parameters (i.e., ν, λ, and γ) is 0.05 ≤ ν ≤ 0.7. Here, we select 10

values between them with an equal interval. We have conducted all experiments on

Windows 7 (Intel Xeon 3 GHz processor, 64 GB RAM) with Python 2.7 environment.

7.3.1 Abalone Dataset

In the Abalone dataset, the goal of the classifier is to predict the age of abalone

from physical measurements. It contains 29 classes. We first group the 29 classes

into three classes [169]. This procedure is the same as discussed in [37], and [169].

Further, we generate 3 one-class datasets by using above-discussed procedure [6][169].

Description of these three datasets, namely, Abalone(1), Abalone(2), and Abalone(3),

are available in Table 7.1. This dataset has 8 attributes. Further, we follow the two

steps procedure [37] for creating privileged information. This procedure is the same as

that in [37]. In the first step, we select 3 out of 8 attributes as a group attribute (i.e.,

privileged attribute). At a time, we take only one attribute as a privileged attribute

and separate from the data. In the second step, we partition data into two or more

than two groups by posing some criteria on the value of each group attribute. When

we apply the criteria on the attribute, then that attribute is converted in the form of

a categorical attribute. Due to this conversion, actual information of this attribute

is hidden, and now, we can treat it as privileged information. A detailed description

of these group partitions is available in Table 7.2. By using the group attributes of

this table, we provide three comparisons of results for Abalone(1), Abalone(2), and

Abalone(3) datasets in Table 7.3. In each comparison, we consider only one out of

three group attributes as a group attribute, and remaining are available as general

Table 7.2: Partitioning of data as per group attribute

Datasets Group Attribute group-1 group-2

Abalone

Height Height< 0.15 Height≥ 0.15

Length Length< 0.5 Length≥ 0.5

Whole weight Whole weight< 0.8 Whole weight≥ 0.8
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attributes. We perform five-fold cross-validation for computing these results. We

follow the above-discussed procedure for all datasets used in this chapter. Results of

Abalone(1), Abalone(2), and Abalone(3) datasets are available in Table 7.3. The last

row contains an average of all results, i.e., average precision score (ηmp). It provides

a clear idea regarding the overall performance of the classifiers. Proposed classifiers,

KOC+ and AEKOC+, collectively outperforms all existing classifiers by a significant

margin. However, both methods do not individually outperform existing classifiers

in some cases (see in Table 7.3). In spite of this bad performance with some group

attributes, KOC+ and AEKOC+ yield better results with a significant margin in

terms of the mean of the average precision score (ηmp). It is available in the last row

of the table. Minimum and maximum margin of ηmp between KOC+ and existing

methods are 3.41% and 6.39%, respectively. Minimum and maximum margin of ηmp

between AEKOC+ and existing methods are 4.47% and 7.45%, respectively. Overall,

AEKOC+ yields the best ηmp compared to all classifiers.

Table 7.3: Average precision score after 5-fold CV for Abalone dataset

Datasets Group Attribute OCSVM+ SVDD+ AEKOC AEKOC+ KOC KOC+

Abalone(1)

Height 73.87 74.42 76.22 84.89 79.24 85.15

Length 80.85 80.59 77.58 85.03 82.10 42.71

Whole weight 78.20 77.91 75.76 86.20 79.72 63.49

Abalone(2)

Height 52.12 52.33 48.93 39.67 38.40 85.66

Length 54.45 52.64 51.86 45.59 41.91 37.70

Whole weight 56.34 56.70 46.71 44.05 43.53 67.93

Abalone(3)

Height 50.84 51.30 45.21 68.27 52.66 85.46

Length 46.11 46.09 43.19 65.23 51.93 39.72

Whole weight 48.53 47.26 49.06 62.65 49.39 64.19

mean of average
precision score (ηmp)

60.15 59.91 57.17 64.62 57.66 63.56

7.3.2 Haberman Dataset

This dataset contains two classes. We generate two one-class datasets from this,

namely, Haberman(1), and Haberman(2). In this dataset, we have to predict the

survival of breast cancer patients after surgery. We consider two attributes out of three

attributes as group attributes, namely, ‘Age of a patient at the time of operation,’ and
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‘Number of positive axillary nodes detected.’ We partition data into two groups based

on the value of each group attributes by considering these as privileged information.

A detailed description of theses group partitions is available in Table 7.4. We present

results comparison between the proposed and existing methods in Table 7.5. The last

row contains an average of all results, i.e., average precision score (ηmp). Proposed

classifiers, KOC+ and AEKOC+, collectively outperform all existing classifiers by a

significant margin. More specifically, AEKOC+ yields the best results among all cases

except one. For Haberman(1), AEKOC+ outperforms AEKOC by a margin of 2.3%

and 6.9% for two group attributes. It also outperforms for both group attributes. For

Haberman(2), AEKOC+ outperforms AEKOC by a margin of 2.7% and 16.6% for

two group attributes. Minimum and maximum margin of ηmp between AEKOC+ and

existing methods are 1.21% and 7.14%, respectively. Overall, AEKOC+ yields the

best ηmp compared to all classifiers.

Table 7.4: Partitioning of data as per group attribute

Datasets Group Attribute group-1 group-2

Haberman
Age of patient at time
of operation

Age≤ 50 Age≥ 51

Number of positive ax-
illary nodes detected

Number = 0 Number≥ 1

Table 7.5: Average precision score after 5-fold CV for Haberman dataset

Datasets Group Attribute OCSVM+ SVDD+ AEKOC AEKOC+ KOC KOC+

Haberman(1)
Age of patient at
time of operation

81.37 80.37 80.89 83.22 84.46 80.46

Number of pos-
itive axillary
nodes detected

72.55 72.48 65.70 72.61 69.05 72.53

Haberman(2)
Age of patient at
time of operation

45.46 44.56 29.21 45.77 37.93 36.58

Number of pos-
itive axillary
nodes detected

26.47 26.47 26.33 29.08 24.46 25.24

mean of average
precision score (ηmp)

56.46 55.97 50.53 57.67 53.98 53.70
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Table 7.6: Partitioning of data as per group attribute

Datasets Group At-
tribute

group-1 group-2 group-3

Statlog Heart

Age Age≤ 50 51 ≤Age≤ 60 Age≥ 61

Sex Sex= 0 Sex= 1 –

Electroca-
rdiographic

Electroca-
rdiographic=
0 or 1

Electroca-
rdiographic=
2

–

7.3.3 Heart (Statlog) Dataset

There are two classes in this dataset. We create two one-class datasets using the

above-discussed procedure, namely, Heart(1) (Statlog) and Heart(2) (Statlog). Heart

(Statlog) has a total of 13 attributes. We select 3 out of 13 attributes as a group

attribute (i.e., privileged attribute). Those attributes are ’Age’, ’Sex’, and ’Electro-

cardiographic’. We partition data into two groups based on the value of each group

attributes. We alternately treat each of the group attributes as privileged information.

A detailed description of these group partitions is available in Table 7.6. By using

the group attributes of this table, we provide three comparisons of results for Statlog

Heart(1) and Statlog Heart(2) datasets in Table 7.7. Both KOC+ and AEKOC+ out-

perform their corresponding base method KOC and AEKOC, respectively. Among all

comparisons in Table 7.7, KOC+ and AEKOC+ outperform all presented classifiers

for all cases except one. More specifically, AEKOC+ only does not yield a better

result in the case of Heart(2) for group attribute ’Age’. We also compute ηmp value

and present in the last row of Table 7.7. Minimum and maximum margin of ηmp

between KOC+ and existing methods are 3.69% and 7.55%, respectively. Minimum

and maximum margin of ηmp between AEKOC+ and existing methods are 1.71% and

5.56%, respectively. Overall, KOC+ and AEKOC+ yield better ηmp compared to all

classifiers.
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Table 7.7: Average precision score after 5-fold CV for Heart dataset (Statlog)

Datasets Group Attribute OCSVM+ SVDD+ AEKOC AEKOC+ KOC KOC+

Heart(1)

Age 84.32 85.39 83.93 88.47 84.21 90.10

Electrocardiographic 80.96 83.72 84.19 85.80 81.29 84.64

Sex 83.82 83.88 83.53 84.65 84.03 86.84

Heart(2)

Age 81.25 81.59 74.41 78.91 75.02 83.58

Electrocardiographic 79.95 79.98 73.30 82.14 75.20 85.87

Sex 77.42 78.40 70.47 83.23 71.10 84.08

mean of average
precision score (ηmp)

81.29 82.16 78.31 83.87 78.48 85.85

7.3.4 MNIST Dataset

We picked this dataset from [13]. Vapnik and Vashist [13] performed binary classi-

fication on the subset of MNIST dataset. They had taken digit 5 and 8 as two classes.

We renamed these digits as class 1 and 2 in this chapter. Like earlier, we create two

one-class datasets, namely, MNIST(1) and MNIST(2), from these two classes. Orig-

inal images in the MNIST database are the size of 28 × 28 pixels. We resized these

images from 28 × 28 to 10 × 10, as shown in Figure 7.1. It make classification more

difficult [13]. The description of the dataset is available in Table 7.1.

Figure 7.1: Digit 5 and 8. First row shows original image which is of 28 × 28 pixel
size and second row shows resized image of 10× 10 pixel size

Vapnik and Vashisht [13] generated the holistic (poetic) description of the image.

These descriptions are treated as privileged information. The poetic description can be

understood by the examples provided in Section 2.6 of Chapter 2, which were originally

provided by Vapnik and Vashist [13]. They transformed the poetic description (see
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the the poetic description in the example in Section 2.6 of Chapter 2) into 21 features

like two-part-ness (0 - 5); tilting to the right (0 -3); aggressiveness (0 - 2); stability (0

- 3); uniformity(0 - 3), etc. Here, first digit 5 and 8 contain features [2, 1, 2, 0, 1], and

[4, 1, 1, 0, 2], respectively. They have also provided preprocessed data with training,

validation, and testing splits1. We also use the same split for our experiments as

used in [13, 179]. Results for MNIST(1) and MNIST(2) datasets are available in

Table 7.8. For MNIST(1), KOC+ and AEKOC+ outperform all available classifiers

in the table. In case of MNIST(2) dataset, KOC+ and AEKOC+ outperform all three

existing classifiers viz., OCSVM+, SVDD+, and KOC; however, do not outperform

AEKOC. We also compute ηmp value and present in the last row of Table 7.7. Overall,

AEKOC+ yields best ηmp compared to all classifiers. Minimum and maximum margin

of ηmp between AEKOC+ and existing methods are 0.64% and 6.41%, respectively.

Table 7.8: Average precision score after 5-fold CV for MNIST dataset

Datasets Group Attribute OCSVM+ SVDD+ AEKOC AEKOC+ KOC KOC+

MNIST(1)
Poetic Description

63.63 63.64 71.98 73.56 63.25 72.35

MNIST(2) 79.22 79.21 81.66 81.35 78.85 79.63

mean of average
precision score (ηmp)

71.42 71.42 76.82 77.45 71.05 75.99

7.3.5 Wisconsin Breast Cancer (WBC) Dataset

This dataset contains two classes. We generate two one-class datasets from this,

namely, WBC(1), and WBC(2). Here, the goal is to predict whether a sample belongs

to a benign or malignant class. We removed 16 samples, which contained the missing

values. The remaining number of samples is 683, as mentioned in Table 7.1. There

is a total of nine attributes in the WBC dataset. We select four attributes as group

attributes, namely, ‘Clump Thickness,’ ‘Uniformity of Cell Size,’ ‘Uniformity of Cell

Shape,’ ‘Marginal Adhesion.’ We partition data into two groups. The division of these

groups is based on the value of each group attributes. We alternately treat each of

the group attributes as privileged information. A detailed description of theses group

partitions is available in Table 7.9. KOC+ outperforms all available classifiers in the

1https://github.com/Chandan-IITI/svmplus_matlab/tree/master/data
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table for WBC(1) and WBC(2) datasets. However, AEKOC+ does not yield better

results for a few cases. We also compute ηmp value and present in the last row of Table

7.7. Minimum and maximum margin of ηmp between KOC+ and existing methods

are 2.21% and 4.97%, respectively. Minimum and maximum margin of ηmp between

AEKOC+ and existing methods are 0.09% and 2.85%, respectively. Overall, KOC+

and AEKOC+ yield better ηmp compared to all classifiers.

Table 7.9: Partitioning of data as per group attribute

Datasets Group Attribute group-1 group-2

WBC

Clump Thickness 1≤Thickness≤ 2 3 ≤Thickness≤ 5

Uniformity of Cell Size Cell Size= 1 2 ≤Cell Size≤ 10

Uniformity of Cell Shape Cell Shape= 1 2 ≤Cell Shape≤ 10

Marginal Adhesion Adheson= 1 2 ≤Adheson≤ 10

Table 7.10: Average precision score after 5-fold CV for WBC dataset

Datasets Group Attribute OCSVM+ SVDD+ AEKOC AEKOC+ KOC KOC+

WBC(1)

Clump Thickness 92.56 93.61 88.49 93.71 91.37 97.10

Uniformity of Cell
Size

93.35 93.30 87.81 94.12 90.40 98.72

Uniformity of Cell
Shape

94.45 95.45 87.92 96.20 92.62 98.22

Marginal Adhesion 94.32 94.68 88.88 92.68 89.30 98.33

WBC(2)

Clump Thickness 99.42 99.18 99.45 99.52 99.42 99.66

Uniformity of Cell
Size

97.60 98.50 99.61 98.78 99.61 99.71

Uniformity of Cell
Shape

99.57 99.37 99.62 99.65 99.58 99.63

Marginal Adhesion 99.50 99.30 99.54 99.48 99.51 99.74

mean of average
precision score (ηmp)

96.34 96.67 93.92 96.77 95.23 98.89

Based on the above discussion and available results, we observe that KOC+ and

AEKOC+ collectively yield the best results for most cases. Here, one case means a

comparison of results of one dataset for one group attribute. Total 29 comparisons

are provided in Table 7.3, 7.5, 7.7, 7.8, and 7.10. KOC+ yields better results for 17

out of 29 cases. Table 7.11 shows that number of datasets with the best ηg value for

each classifier. This table shows that proposed classifiers attain the top position in

the table, and remaining classifiers yield the best results for only 3 datasets. As per
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discussion in Chapter 3, we also compute three more criteria [167] for further analysis:

(i) mean of average precision score (i.e., ηmp) over 29 comparisons (ii) Friedman test

(F-score and p-value) (iii) Friedman rank (ηf ). Based on these three criteria, we

analyze the performance and provide in the following points:

(i) We compute ηmp for analyzing the combined performance of the classifier. ηmp

value of each classifier is available in Table 7.12(a) in decreasing order of ηmp.

In this table, we observe that KOC+ attains top position and yields maximum

ηmp among all proposed and existing classifiers. Second position is also hold by

AEKOC+. Difference between the ηmp values of first and second position is only

0.01. However, difference between the ηmp value of 1st and 3rd position of the

classifier is 2.5. This difference is significant and we statistically verify the same

in the next point.

(ii) Although proposed classifiers attain top position among all classifiers in Table

7.12(a). However, we need to verify the outcomes of the proposed and existing

classifiers statistically. For this purpose, we conduct a non-parametric Friedman

test [166] similar as discussed in Section 3.2 of Chapter 3. Friedman test mainly

computes three components viz., p-value, F-score, and critical value. The com-

puted p-value, F-score value and critical value are 3.1443e − 07, 38.3941 and

11.0705, respectively. Since the computed F-score value is higher than the criti-

cal value, and the p-value is significantly lesser than the tolerance level of 0.05,

we reject the null hypothesis with 95% of confidence. Therefore, we conclude

that the outcomes presented in this chapter are statistically significant.

(iii) Further, we compute Friedman Rank (ηf ) [166] for each classifier as discussed in

Section 2.8 of Chapter 2. We consider ηf as the final decision criteria to decide

the rank of any classifiers. In Table 7.12(b), we present ηf along with ηmp of

each classifier in increasing order of ηf . In this table, KOC+ does not attain top

position in spite of the best ηmp in Table 7.12(a). Here, AEKOC+ attains top

position as per ηf . ALL LUPI framework-based methods obtain better ηmp and

ηf compared to tradition machine learning-based methods.
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Table 7.11: Number of datasets for which each one-class classifier yields the best
results

One-class
Classifiers

Number of datasets
with the best ηg
value

KOC+ 17.00

AEKOC+ 9.00

OCSVM+ 1.00

AEKOC 1.00

KOC 1.00

SVDD+ 0.00

Table 7.12: Friedman Rank (ηf ) and mean of average precision score (ηmp)

7.12(a) In decreasing order of ηmp

ηf ηmp

KOC+ 2.34 77.41

AEKOC+ 2.28 77.40

SVDD+ 3.84 74.91

OCSVM+ 3.78 74.78

KOC 4.21 72.74

AEKOC 4.55 72.12

7.12(b) In increasing order of ηf

ηf ηmp

AEKOC+ 2.28 77.40

KOC+ 2.34 77.41

OCSVM+ 3.78 74.78

SVDD+ 3.84 74.91

KOC 4.21 72.74

AEKOC 4.55 72.12
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7.4 Summary

In this chapter, we have investigated non-iterative learning-based one-class clas-

sifiers for the LUPI setting. We enabled KRR-based one-class classifiers for learning

from privileged information by taking KOC and AEKOC as the base classifiers. KOC

and AEKOC follow the traditional way of classification and ignore this additional in-

formation. However, the proposed one-class classifier, KOC+ and AEKOC+, utilized

this information by introducing a correction function in the minimization problem of

KOC and AEKOC. This correction function helped AEKOC+ in building a better

classification model. Both proposed one-class classifiers have achieved better ηmp and

ηf compared to all other mentioned one-class classifiers in this chapter. We have statis-

tically verified that the outcomes presented in this chapter are statistically significant,

with 95% of confidence.

Although, the proposed KOC+ and AEKOC+ yielded better generalization per-

formance compared to KOC and AEKOC, but they generated more complex model

compared to KOC and AEKOC because proposed methods had to tune more parame-

ters compared to KOC and AEKOC. In the real-time scenario, selection of appropriate

group attribute will also be a challenging task, which needs to be investigated further.

Also, the proposed methods can be further extended for different types of learnings,

like online learning, one-shot learning, multi-task learning, etc.
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Chapter 8

Adaptive Online Sequential Learning with

Kernel Ridge Regression for One-class

Classification

In all of the proposed works in the previous chapters, all methods belong to batch

learning. These classifiers can efficiently handle stationary datasets; however, unable

to handle non-stationary and streaming datasets. These types of data can be handled

by online learning. Online learning has attracted researchers in recent years due to

its capability to handle a high volume of streaming data with less computational and

storage costs [164, 165, 180, 181]. In online learning, a model is built based on the

currently available data and then continuously updates this model as the next samples

arrive for training. Literature survey is briefly discussed in Section 2.7 of Chapter 2.

In this chapter, KRR-based online sequential one-class classifiers are modeled for two

types of frameworks viz., boundary, and reconstruction. We propose an online version

of two one-class classifiers, viz., KOC, and AEKOC. Here KOC is boundary framework-

based, and AEKOC is a reconstruction framework-based one-class classifier. Online

sequential versions of KOC and AEKOC are named as OS-KOC and OS-AEKOC,

respectively. Both proposed methods are discussed in the subsequent sections.
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8.1 Boundary Framework-based Approach: OS-

KOC

In Boundary framework-based method i.e. OS-KOC, model is trained by only

target data X and approximates all data to a real number. Figure 8.1 shows online

OCC with single output node architecture.
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Figure 8.1: A schematic diagram of online sequential KRR-based single output node
architecture for OCC: Boundary framework-based

Here, given a stream of training data X: {(x 1, c), (x 2, c), ..., (x t, c), ...}, where

x t = [xt1, xt2, ..., xtn] ∈ <n is n-dimensional input of the tth sample, and c is the class

label of the target class. Input layer that takes data for tth input sample is coded

as (x t, r) because model has to approximate all data to a real number r. Target

output vector R is represented as an appropriate size of vector i.e. [r, r....r, ...], where

each element is r. Here, value of r is considered as 1 for all experiments. Further,

kernel feature mapping has been employed between input and hidden layer by using

a function φ(.). Here, kernel matrix is represented as K = ΦTΦ, where Φ denotes

feature mapping in higher dimension space. Note that Φ can also be written in

terms of X, i.e. Φ = φ(X), where φ(.) denotes kernel feature mapping. Here,

hidden layer output i.e. kernel matrix K is a square symmetric matrix of size t × t.
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Output weight vector β for any t samples in sequence of data is represented as (β)t.

R̂ = [R̂1, R̂2...R̂t, ...] is the predicted output vector and R̂t is the predicted output for

tth sample. ĉ = [ĉ1, ĉ2...ĉt, ...] is the predicted class vector, where ĉt is the predicted

class for tth sample. Based on these preliminaries, boundary framework-based online

learning algorithm OS-KOC is discussed below in four phases i.e. Initialization,

Update, Forgetting and Decision.

8.1.1 Initialization Phase

In this phase, first, basic KRR formulation is derived for kernel feature mapping

by using a non-linear feature mapping X → Φ and representer theorem[103]. Here,

Linear case can be easily derived from the formulation of non-linear case by substi-

tuting Φ→X.

For the initial chunk {X0,R0} of size N0, the objective is to minimize both output

weight vector (β)0 as well as a error vector (e0) between expected (R0) and predicted

output ((β)T0 Φ0). Minimization problem for non-linear feature mapping case can be

written as follows:

Minimize
(β)0,e0

: L =
1

2
‖β0‖2 + C

1

2
‖e0‖2

Subject to : βT0 Φ0 = R0− e0.
(8.1)

Here, C is used as a regularization parameter.

Representer Theorem [103] is exploited in (8.2), which describes the weight vector

w as a linear combination of the training data representation in non-linear space (Φ0)

and a reconstruction weight vector (W0) as follows:

(β)0 = Φ0W0. (8.2)

Further, by using Representer theorem, minimization problem in (8.1) can be refor-

mulated as follows:

Minimize
(W )0,e0

: L =
1

2
W T

0 ΦT
0 Φ0W0 + C

1

2
‖e0‖2

Subject to : W T
0 ΦT

0 Φ0 = R0− e0.
(8.3)

147



Now, substituting kernel matrix of initial training samples, K0 = (Φ0)
TΦ0 =

K(X0,X0), in the above equation and obtain the following minimization problem:

Minimize
W0,e0

: L =
1

2
W T

0 K0W0 + C
1

2
‖e0‖2

Subject to : W T
0 K0 = R0− e0.

(8.4)

By using Lagrangian relaxation [182], (8.4) can be written as:

Maximize
α

Minimize
W0,e0

: L =
1

2
W T

0 K0W0 + C
1

2
‖e0‖2

−α(W T
0 K0−R0 + e0),

(8.5)

where α = [α1, α2, . . . , αN0 ] are the Lagrange multipliers, which are non-negatives and

employed to combine the constraint with the minimization problem. By using Karush-

Kuhn-Tucker (KKT) theorem [183], take partial derivatives of (8.5) with respect to

all variables W0, e0 and α. That is

∂L

∂W0

= 0⇒W0 = α,

∂L

∂e0
= 0⇒ Ce0 = α,

∂L

∂α
= 0⇒W T

0 K0−R0 + e0 = 0.

(8.6)

After solving the above set of equations in (8.6) for W0, it is obtained as follows:

W0 = (K0 +
1

C
I)−1R0, (8.7)

where I is an identity matrix.

Finally, W0 for initial training samples is obtained as follows:

W0 = P0R0,whrere P0 =

(
K0 +

1

C
I

)−1

. (8.8)

K0 is defined based on Mercer’s condition. That is, any kernel method which satisfies

Mercer’s condition can be adopted as the kernel for the classifier. Obtained K0 and
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P0 are stored in different variables K and P respectively as these variables need to

be updated when new training samples arrives. Update of K and P are discussed in

the second phase. K, P , K0 and P0 are defined as follows:

K =

(
K0 +

1

C
I

)
=




K11 K12 . . . K1N0

K21 K22 . . . K2N0

...
...

. . .
...

KN01 KN02 . . . KN0N0

+
1

C
I

 , (8.9)

P = P0 = K−1 =




K11 K12 . . . K1N0

K21 K22 . . . K2N0

...
...

. . .
...

KN01 KN02 . . . KN0N0

+
1

C
I



−1

. (8.10)

8.1.2 Update of Kernel Matrix (K ) and Inverse of Kernel

Matrix (P)

Initially,K and P are calculated as per (8.9) and (8.10). Here,K represents kernel

matrix and P represents inverse of this kernel matrix for all the arrived samples until

now for training. K and P are updated continuously for any upcoming new samples

Xv as per (8.11), where Xv= {(x v1, c1), (x v2, c2), ..., (x vs , cs)} and Xv ⊂ X. Current

value of K is represented as Ku, which is generated by using old samples Xu ⊂ X.

Now, K is calculated after arrival of the new sample as follows:

K =

 Ku Ku,v

(Ku,v)
T Kv

 , (8.11)

whereK is a combination of four block matrices. Block matrixKu,v andKv above are

calculated as per (8.12), which is discussed next. Let the number of samples processed

until now be b and number of samples in the current chunk be s. b is initially equal

to N0. Update b and s each time when calculation starts for new samples. The block
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matrices Kv and Ku,v are defined as follows:

Kv =



K(xv1,x

v
1) . . . K(xv1,x

v
s)

...
. . .

...

K(xvs ,x
v
1) . . . K(xvs ,x

v
s)

+
1

C
I

 , (8.12)

Ku,v =


K(xu1 ,x

v
1) . . . K(xu1 ,x

v
s)

...
. . .

...

K(xub ,x
v
1) . . . K(xub ,x

v
s)

 . (8.13)

P , which is inverse of K given in (8.11), is defined as follows:

P = K−1 =

 Ku Ku,v

(Ku,v)
T Kv

−1 . (8.14)

Further, compute the inverse in (8.14) using block matrix inverse [184] given by:

S = D−1 =

D11 D12

D21 D22

−1 =

S11 S12

S21 S22

 . (8.15)

S in (8.15) can be written as follows to obtain inverse:

D11 D12

D21 D22

S11 S12

S21 S22

 =

I 0

0 I

 , (8.16)

where S21 = ST12 and D21 = DT
12.

After solving (8.16), the following solution is obtained:

S11 = (D11−D12D
−1
22 D21)

−1,

S12 = −D−1
11 D12(D22−D21D

−1
11 D12)

−1,

S21 = −D−1
22 D21(D11−D12D

−1
22 D21)

−1,

S22 = (D22−D21D
−1
11 D12)

−1.
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Hence, (8.14) can be rewritten as follows:

P = K−1 =

 Ku Ku,v

(Ku,v)
T Kv

−1 =

P11 P12

P21 P22

 . (8.17)

Based on the above discussion, P11, P12, P21 and P22 in (8.17) are given as below:

P11 = (Ku−Ku,vK
−1
v KT

u,v)
−1,

P12 = −K−1
u Ku,vP22,

P21 = −K−1
v KT

u,vP11,

P22 = (Kv −KT
u,vK

−1
u Ku,v)

−1.

(8.18)

Further, P11 can be expanded by employing the Woodbury formula[185] as follows:

P11 = (Ku−Ku,vK
−1
v KT

u,v)
−1

= K−1
u −K−1

u Ku,v(K
T
u,vK

−1
u Ku,v +K−1

v )−1KT
u,vK

−1
u .

(8.19)

Woodbury formula [185] is employed instead of computing the direct inverse because

now there is a need to compute two inverses, i.e. K−1u and K−1v independently, where

K−1u is already computed in the previous iteration. The advantage of this approach

in terms of the time and storage complexity is described in Section 8.3.4. P12, P21

and P22 can be updated in a similar manner.

8.1.3 Adaptive Learning

During online learning, data increases continuously, and therefore, it creates two

challenges: the algorithm needs to learn continuously in case (a) if the distribution

of training samples changes, and (b) if the memory of system exhausts (as memory

is not infinite). Both of these challenges can be addressed by a forgetting mechanism

with a sliding window as shown in Figure 8.2. This mechanism helps to unlearn the

old or irrelevant samples while unlearning of the trained model is required. Further,
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relearning on new samples can be done in our proposed methods as discussed in the

previous and next sections.

 

 

 

 

 

 

 

  

B1 B2 B3 B4 B5 B6 B7 B0 

Previous window Next window Current window 

Single chunk/block 

of data Sliding Window size 

Figure 8.2: Illustration of sliding window for a given data stream

Forgetting mechanism for the proposed classifier:

Suppose, Pcurr = K−1
curr ∈ <s×s is the inverse of the current kernel matrix Kcurr ∈

<s×s. Now, the impact of learning of old f samples needs to be removed. In this

mechanism, two things viz., kernel matrix and the inverse of that kernel matrix, need

to be updated before moving to learn new samples. Modified kernel matrix Knew

can be simply generated by removing rows and columns of the corresponding samples

from the current kernel matrix Kcurr. Modified inverse matrix Pnew is calculated

after removing (forgetting) few samples from Kcurr as follows:

Pcurr = K−1
curr =

F11 F12

F T12 R22

−1 =

Fi11 Fi12

FiT12 Ri22

 , (8.20)

or Fi11 Fi12

FiT12 Ri22

F11 F12

F T12 R22

 =

I 0

0 I

 . (8.21)

Suppose, if it is required to delete F11, F12 and F T12 from Kcurr and to calculate

the inverse of the remaining blockR22 by reusing the currently available inverse Pcurr.

Multiplying both sides of (8.21) with

 I 0

−FiT12Fi
−1
11 I

 , (8.22)
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and we get Fi11 Fi12

0 Ri22 − FiT12Fi
−1
11 Fi12

F11 F12

F T12 R22


=

 I 0

−Fi−111Fi
T
12 I

 .
(8.23)

From (8.23), Pnew can be obtained after deletion of F11, F12 and F T12 from Kcurr as

follows:

(
Ri22 − FiT12Fi−111Fi12

)
R22 = I,

Pnew = R−122 = Ri22− FiT12Fi−111Fi12.
(8.24)

8.1.4 Decision Phase

After processing the training datasetXtr
curr in the current window, output function

can be written for any set of k samples Xk = {x1, x2, ..., xk} as follows:

f(Xk) =


K(Xtr

curr, x1)
...

K(Xtr
curr, xk)


T

PR, (8.25)

where K(Xtr
curr, xi) denotes kernel vector for the ith sample xi. Further, perform the

following steps to decide whether any sample is outlier or not:

(i) We calculate distance (Λ) between the predicted value of the tth training sample

and R as follows:

Λ(xt) = |f(xt)− r| =
∣∣∣R̂t − r

∣∣∣ .. (8.26)

(ii) After calculating distances Λ as per (8.26), we sort the differences in decreasing

order. Further, reject few percent of training samples based on the deviation.

Most deviated samples are rejected first because they are most probably far

from distribution of the target data. The threshold (θ) is decided based on these
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deviations as follows:

θ = Λ(bν ∗Nc), (8.27)

where 0 < ν ≤ 1 is the fraction of rejection of training samples for deciding

threshold value. N is the number of training samples and b c denotes floor

operation. We consider 5% of rejection, i.e. ν = 0.05. Now, generate a decision

function to decide whether any new sample p belongs to the target or outlier,

where z = [z1, z2, ..., zn]. This function is defined by the following equation:

Sign(θ − Λ(z )) =

 1, p is classified as target

−1, p is classified as outlier.
(8.28)

The above proposed approach is summarized as pseudo code in Algorithm 8.1.

Algorithm 8.1 OS-KOC: Boundary framework-based approach

Input: Training set X= (x 1, c), (x 2, c), . . . , (xN0 , c), . . . ,(x t, c), . . .
Output: Whether each sample belongs to Target class or Outlier class

1: Initialization Phase
2: Pass initial set of samples X0,R0 to the classifier as:
{(x 1, R1), (x 2, R2), ..., (xN0 , RN0)} // For first chunk of N0 samples, follow
the steps as below.

3: Employ kernel feature mapping: Φ0 = φ(X0).
4: Output Weight W0 for (X0,R0):

W0← P0R0

P0←K−1
0

End of Initialization Phase
5: For second chunk onwards, following steps are required

K ←K0

P ← P0

6: for i = 1 to last chunk of data in X do
7: Set size of chunk at the current stage as s
8: Update the final kernel matrixK and its inverse P in two steps as given below:
9: Step 1: Forgetting Phase

10: Remove the impact of f old samples from the current inverse P using (8.24),
i.e.,

Pnew = R−122 = Ri22− FiT12Fi−111Fi12

11: Update the kernel matrix K by removing those rows and columns which were
generated due to the old s samples.
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12: Step 2: Retraining Phase
13: Update the kernel matrix K as per (8.11), i.e.,

K =

[
Ku Ku,v

(Ku,v)
T Kv

]
14: Calculate Kv for ith chunk by using (8.12)
15: Calculate Ku,v for ith chunk by using (8.13)
16: Compute the inverse of updated kernel matrix K, i.e., P = K−1 using block

inverse as discussed in (8.15)-(8.19)
17: b = b+ s
18: Update the Output Weight using the value of R and updated P as:

β = PR

19: Compute the predicted value by using output function f(Xk), which is defined
in (8.25)

20: Calculate distances (Λ) between predicted value of training sample and R as
per (8.26), i.e.,

Λ(xt) = |f(xt)− r| =
∣∣∣R̂t − r

∣∣∣
21: Sort the distances in decreasing order
22:

23: Compute θ using (8.27), i.e., θ = Λ(bν ∗Nc)
24: Use (8.28) to decide whether a new sample z belongs to target or not

Sign(θ − Λ(z )) =

{
1, z is classified as target
−1, z is classified as outlier

25: end for
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8.2 Reconstruction Framework-based Approach:

OS-AEKOC

In reconstruction framework-based method i.e. OS-AEKOC, model is trained by

only target data X and approximates all data to itself. Figure 8.3 shows the archi-

tecture for OS-AEKOC. Here, the given stream of training data X is defined same

as discussed above in the boundary framework. Input layer that takes data for tth

input sample is coded as (x t,x t) because the target is identical to the input layer.

Further, kernel feature mapping is employed between input and hidden layer, which

is same as discussed in the above section. Output weight matrix βa until tth sample

is represented as (βa)t. X̂ = (x̂1, x̂2...x̂t, ...) is the set of predicted output vec-

tors, where x̂t = [x̂t1, x̂t2, ..., x̂tn] is the predicted output vector for the tth sample.

ĉ = [ĉ1, ĉ2...ĉt, ...] is the predicted class vector, where ĉt is the predicted class for the

tth sample. Formulation of OS-AEKOC is discussed next.
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Figure 8.3: A schematic diagram of online sequential KRR-based Auto-Encoder for
OCC: Reconstruction framework-based

Similar to OS-KOC, minimization problem of OS-AEKOC is written for kernel

feature mapping using a non-linear feature mapping X → Φ and representer theorem

[103].
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For the initial chunk {X0,X0} of size N0, the objective is to minimize the output

weight (βa)0 and the reconstruction error E0 between the expected (X0) and the

predicted values ((βa)
T
0 Φ0). Minimization problem for this can be written as follows:

Minimize
(βa)0,E0

: L =
1

2
‖(βa)0‖2F + C

1

2
‖E0‖2F

Subject to : (βa)
T
0 Φ0 = XT

0 −ET0 ,
(8.29)

where C is used as a regularization parameter.

Next, Representer Theorem [103] is exploited, which describes the weight matrix

(βa)0 as a linear combination of the training data representation in non-linear space

(Φ0) and a reconstruction matrix (Wa)0. That is, the output weight matrix for the

kernel feature mapping case is given as follows:

(βa)0 = Φ0(Wa)0. (8.30)

It is to be noted that β0 andW0 are weight vectors in OS-KOC due to single output

node architecture, however, (βa)0 and (Wa)0 are weight matrices in OS-AEKOC due

to multi-output node architecture.

Thus, the minimization problem in (8.29) can be reformulated as follows:

Minimize
(Wa)0,E0

: L =
1

2
Tr
(
(Wa)

T
0 ΦT

0 Φ0(Wa)0

)
+ C

1

2
‖E0‖2F

Subject to : (Wa)
T
0 ΦT

0 Φ0 = XT
0 −ET0 .

(8.31)

Now, by substituting kernel matrix K0 = (Φ0)
TΦ0 = K(X0,X0) in the above

equation, the following minimization problem is obtained:

Minimize
(Wa)0,E0

: L =
1

2
Tr
(
(Wa)

T
0K0(Wa)0

)
+ C

1

2
‖E0‖2F

Subject to : (Wa)
T
0K0 = XT

0 −ET0 .
(8.32)
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By using Lagrangian relaxation [182], (8.32) can be written as:

Maximize
α

Minimize
(Wa)0,E0

: L =
1

2
Tr
(
(Wa)

T
0K0(Wa)0

)
+ C

1

2
‖E0‖2F

−α((Wa)
T
0K0−XT

0 +ET0 ),

(8.33)

where α = [α1, α2, . . . , αi, . . . , αN0] are the Lagrange multipliers, and αi =

[αi1, αi2, . . . , αin], which are non-negative and employed to combine the constraint

with the objective function. By using Karush-Kuhn-Tucker (KKT) theorem [183],

take partial derivatives of (8.33) with respect to all variables (Wa)0,E0 and α, i.e.,

∂L

∂(Wa)0
= 0⇒ (Wa)0 = α,

∂L

∂E0

= 0⇒ CE0 = α,

∂L

∂α
= 0⇒ (Wa)

T
0K0−XT

0 +ET0 = 0.

(8.34)

Following weight is obtained from solving equation in (8.34):

(Wa)0 = P0X0,where P0 =

(
K0 +

1

C
I

)−1

. (8.35)

Finally, weight matrix for initial samples is obtained, which needs to be updated as

below.

Initially, K and P are calculated as per (8.35). Both are updated continuously

for any upcoming new samples Xv as per (8.11)-(8.19). After processing the training

dataset Xtr
curr in the current sliding window, output function for any set of k samples

Xk = {x1, x2, . . . , xk} can be written as follows:

f(Xk) =


K(Xtr

curr, xk)
...

K(Xtr
curr, x1)


T

PXtr
curr

(8.36)

where K(Xtr
curr, xi) denotes kernel vector for the ith sample xi. Afterwards, we

calculate error and decide whether any sample belongs to target class or outlier class
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as per pseudo code discussed in Algorithm 8.2.

Algorithm 8.2 OS-AEKOC: Reconstruction framework-based approach

Input: Training set X= (x 1, c1), (x 2, c2), . . . , (xN0 , cN0), . . . , (x t, ct), . . .
Output: Whether each sample belongs to Target class or Outlier class

1: Initialization Phase
2: Pass initial set of samples X0 to the classifier as:
{(x 1,x 1), (x 2,x 2), ..., (xN0,xN0)}

3: For first chunk of N0 samples, follow the steps as below.
4: Employ kernel feature mapping: Φ0 = φ(X0).
5: Output Weight (Wa)0 for (X0,X0):

(Wa)0← P0X0

P0←K−1
0

End of Initialization Phase
6: For second chunk onwards, following steps are required

K ←K0

P ← P0

7: for i = 1 to last chunk of data in X do
8: Set size of chunk at the current stage as s
9: Update the final kernel matrixK and its inverse P in two steps as given below:

Step 1: Forgetting Phase
10: Remove the impact of f old samples from the current inverse P using (8.24),

i.e.,

Pnew = R−122 = Ri22− FiT12Fi−111Fi12

11: Update the kernel matrix K also by removing those rows and columns which
were generated due to the old s samples.

12: Step 2: Retraining Phase
13: Update the kernel matrix K as per (8.11), i.e.,

K =

[
Ku Ku,v

(Ku,v)
T Kv

]
14: Calculate Kv for ith chunk by using (8.12)
15: Calculate Ku,v for ith chunk by using (8.13)
16: Compute the inverse of updated kernel matrix K, i.e., P = K−1 using block

inverse as discussed in (8.15)-(8.19)
17: b = b+ s
18: Update the Output Weight using the value ofXtr

curr and updated P as (Wa) =
PXtr

curr

19: Compute the predicted value by using output function f(Xk), which is defined
in (8.36)
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20: Calculate sum of square error (Λ) between predicted (x̂t) and actual value (xt)
of tth training sample:

21:

Λ(xt) =
n∑
j=1

(xjt − x̂
j
t)

2
(8.37)

22: Sort the distances in decreasing order
23: Compute θ using (8.27), i.e., θ = Λ(bν ∗Nc)
24: Use (8.28) to decide whether a new sample z belongs to target or not

Sign(θ − Λ(z )) =

{
1, z is classified as target
−1, z is classified as outlier

25: end for

8.3 Experiments

In this section, the performance of the classifiers is tested on both types of the

datasets, i.e. synthetic and real-world. Sixteen synthetic and four real-world datasets

are used for the non-stationary environment (see Table 8.1). We also test on two

synthetic datasets from the stationary environment for verifying the boundary con-

struction capability of the classifier. All experiments are executed on MATLAB 2014b

in Windows 7 (64 bit) environment with 64 GB RAM, 3.00 GHz Intel Xeon proces-

sor. All existing and proposed classifiers are implemented and tested in the same

environment.

8.3.1 Boundary Construction on Synthetic Stationary

Datasets

As one-class classifiers are also called as data descriptors, and hence, the proposed

methods are first tested on stationary synthetic datasets to verify their data describing

(boundary creation) ability. The motive to test on the stationary datasets is to show

that the boundary construction capability of online classifiers is at least as good as

their corresponding batch learning-based classifiers. Here, OS-KOC, OS-AEKOC are

the online version of KOC [7] and AEKOC (Chapter 3), respectively. Therefore, we

compare these classifiers for verifying boundary construction capability. It can be
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easily visualized in Figure 8.4 that the proposed online classifiers have created similar

boundary like their corresponding offline one-class classifiers. Boundary creation for

ring dataset is challenging task for one-class classifiers as ring dataset can be covered

by a single circle as well as by two concentric circles. However, two concentric circles

are a more appropriate boundary, which can be seen in Figure 8.4(a) to 8.4(d). It can

be observed in Figure 8.4(a) to 8.4(h) that the boundary framework-based classifiers

create smoother boundary compared to the reconstruction framework-based classifier

for both the synthetic datasets. Banana dataset checks the ability of the classifier to

create a convex boundary. Overall, it can be observed from these figures that the

proposed online one-class classifiers have similar boundary construction capability as

the offline one-class classifiers.
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Figure 8.4: Performance of the proposed online classifiers on synthetic dataset:
Boundary and reconstruction framework-based approaches

8.3.2 Performance Comparison on Non-stationary Synthetic

Datasets

The proposed online one-class classifiers are tested on non-stationary datasets to

verify two things; first, adaptiveness and second, handling capability of large streaming
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Table 8.1: Dataset description for non-stationary datasets

Synthetic Non-stationary Datasets

Dataset Name #Feat. Drift #Target #Outlier #Records

1CDT [49] 2 400 8000 8000 16,000

1CHT[49] 2 400 8000 8000 16,000

4CE1CF[49] 2 750 34650 138600 173,250

4CR[49] 2 400 36100 108300 144,400

GEARS-2C-2D[186] 2 2,000 100000 100000 200,000

4CRE-V1[49] 2 1,000 31250 93750 125,000

4CRE-V2[49] 2 1,000 45750 137250 183,000

5CVT[49] 2 1,000 8000 16000 24,000

2CDT [49] 2 400 8000 8000 16,000

2CHT[49] 2 400 8000 8000 16,000

1CSurr[49] 2 ≈600 20200 35083 55,283

UG-2C-2D[186] 2 1,000 50000 50000 100,000

UG-2C-3D[186] 3 2,000 100000 100000 200,000

UG-2C-5D[186] 5 2,000 100000 100000 200,000

MG-2C-2D[186] 2 2,000 100000 100000 200,000

FG-2C-2D[187] 2 2,000 150000 50000 200,000

Real Non-stationary Datasets

#Feat. Drift #Target #Outlier #Records

Electricity [188] 8 Real 19237 26075 45,312

Poker-hand[170] 10 Real 415526 413675 829,201

Keystroke[189] 10 Real 400 1200 1600

Abalone[170] 10 Real 2770 1407 4177
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datasets with limited memory. All non-stationary synthetic datasets have different

types of drift associated with them like periodic drift, non-periodic drift etc. Drift

occurrence of each dataset is briefly described in Table 8.1 and also visualized on the

web page (https://goo.gl/j2wQw4). The synthetic datasets used in this chapter are

taken from ([49, 186, 187] and [189]). All synthetic and real datasets were originally

proposed for binary or multi-class classification in the non-stationary environment.

We modify these datasets for the OCC task by assuming one-class as a normal class

and the remaining all classes as an outlier class.

Classifiers are experimented in two modes viz., static (i.e. offline classifiers) and

sliding window (i.e. online classifiers). One-class classifiers in static mode are named

as KOC(S) and AEKOC(S). Here, ’S’ stands for static mode. In static mode, one-

class classifiers are just trained on initially available samples and then tested on all

remaining samples like batch learning. OS-KOC, OS-AEKOC, incSVDD [40] and

OKPCA [160] are tested in the sliding window mode. Here, the classifiers adapt to

the environment as per the upcoming new samples in the sliding window and forget

the old samples. Except for the large real-world datasets, the sliding window and the

block size are fixed as 150 and 50, respectively (see the last two columns of Table 8.2

and 8.3).

The accuracy of these datasets is plotted in Figure 8.5 and 8.6. These plots are

created by dividing the dataset into hundred batches and the mean accuracy achieved

by all the batches in 100 steps is plotted. Here, the y-axis and the x-axis denote

accuracy and steps, respectively for all of the plots in Figure 8.5 and 8.6.

Next, we discuss results for different datasets based upon the nature of the drift.

(a) Drift only in the outlier class: The three datasets that have this behavior are

1CDT, 1CHT, and 4CE1CF. It can be observed from Table 8.2 and Figure 8.5(a),

8.5(b), 8.5(c) that one-class classifiers in static mode yield similar or comparative

results as a sliding window mode for these datasets. This is because the normal

class in these datasets are not changing their distribution over time, only the

outlier class changes its distribution. However, the same can’t be stated for the

remaining synthetic datasets as the distribution of both classes is changing in
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(a) 1CDT
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(c) 4CE1CF
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(e) GEARS-2C-2D
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(f) 4CRE-V1
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(g) 4CRE-V2

0 10 20 30 40 50 60 70 80 90 100

Step

0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

(h) 5CVT
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(i) 2CDT
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(j) 2CHT
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(k) 1CSurr

Figure 8.5: Performance of one-class classifiers on all datasets in 100 steps. This
figure is continued to Figure 8.6
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(a) UG-2C-2D
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(b) UG-2C-3D
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(c) UG-2C-5D
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(d) MG-2C-2D

0 10 20 30 40 50 60 70 80 90 100

Step

0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

(e) FG-2C-2D
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(f) Electricity
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(g) Poker-hand
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(h) Keystroke
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(i) Abalone

Figure 8.6: Continuation of Figure 8.5
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the remaining datasets. OKPCA performs better for 1CDT and 1CHT datasets,

however, OS-KOC performs better for 4CE1CF datasets compared to the other

online one-class classifiers, which are present in Table 8.2.

(b) Periodic drift in outlier and non-periodic drift in the normal class: The

dataset which has this behavior is 4CR. For 4CR dataset, the normal class rotates

on a circular path and three different distributions of outlier also rotate on the

circular path but they create a periodic drift collectively. Periodic drift can also be

visualized by observing the repeating nature of the generated performance plot for

4CR dataset of the classifiers in the static mode (see Figure 8.5(d)). As expected

static mode doesn’t perform well for this dataset and the proposed classifiers yield

better accuracy compared to all except OKPCA.

(c) Periodic drift in both the normal and the outlier class: The four datasets

that have this behavior are Gears-2C-2D, 4CRE-V1, 4CRE-V2 and 5CVT. For

these datasets, classifiers in static mode yield inferior performance compared to

sliding window mode classifiers due to the periodic drift occurrence in the normal

as well as the outlier class, which can also be noticed in the Figure 8.5(e), 8.5(f),

8.5(g), and 8.5(h) (the performance dips down at the regular periodic interval

for static mode). However, the proposed and existing online classifiers smoothly

adapt to this periodic drift. The adaptation of OS-KOC in the non-stationary

environment has been visualized for Gears-2C-2D dataset along with some other

datasets on the web page(https://goo.gl/8bvkps). As the Gears-2C-2D dataset

has a smaller drift, and therefore, classifiers in static mode perform better for this

dataset compared to other three synthetic datasets. Boundary framework-based

one-class classifier, i.e. OS-KOC outperforms all the present classifiers in Table

8.2. Specifically, OS-KOC outperforms the OKPCA by significant margin, i.e.

4.51%, 2.83%, 7.74%, and 0.87%, for 4CRE-V2, 5CVT, Gears-2C-2D, and 4CRE-

V1, respectively.

(d) Non-periodic drift in both the normal and the outlier class: The two

datasets that have this behavior are 2CDT and 2CHT. Drift continuously increases

166

https://goo.gl/8bvkps


diagonally and horizontally for these datasets, respectively. Adaption of OS-KOC

on 2CDT dataset is visualized in the Figure 8.7. Here, all plotted samples belong

to the normal class but at distinct timestamps. Two colors are used to discriminate

the normal samples at two consecutive timestamps. Reconstruction framework-

based classifier, i.e. OS-AEKOC performs best among all the classifiers and our

proposed classifiers outperform incSVDD and OKPCA significantly by more than

2% and 3% margin for 2CDT and 2CHT datasets, respectively. Among all sixteen

synthetic datasets, proposed and existing one-class classifiers achieve the least

accuracy for 2CHT dataset, i.e. when horizontal non-periodic drift occurs.
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Figure 8.7: Adaption of OS-KOC on 2CDT dataset

(e) Drift created by surrounding the normal class by outlier: In 1CSurr

dataset, normal and outlier, both classes are drifting and normal data is compactly

surrounded by outliers in a non-periodic way. OS-KOC performs best among

all, however, OS-AEKOC yields better accuracy than incSVDD but inferior to

OKPCA.

Next, we discuss results for different datasets based upon the occurrence of drift with

the Gaussian distribution.

(a) Drift as per Unimodal Gaussian distribution of the normal and the out-

lier class: Normal and the outlier classes are generated by unimodal Gaussian
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distribution for three datasets viz., UG-2C-2D, UG-2C-3D, and UG-2C-5D, of two,

three and five dimensions, respectively. Distribution of UG-2C-2D and the adap-

tive boundary created by the OS-KOC on this dataset for different timestamps

are visualized in the Figure 8.8. Distribution of these datasets are also visual-

ized on this web page (https://goo.gl/j2wQw4) and adaptiveness of OS-KOC

on UG-2C-2D is visualized on this web page (https://goo.gl/8bvkps).
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Figure 8.8: Adaption on UG-2C-2D dataset

OS-KOC performs best among all and outperforms incSVDD and OKPCA for

all three datasets. Overall, OS-AEKOC performs well on the two-dimensional

dataset, however, for three and five-dimensional datasets, i.e. UG-2C-3D and

UG-2C-5D, it still performs better than OKPCA but inferior to incSVDD.

(b) Drift as per Multi-modal Gaussian distribution of the normal and the

outlier class: The normal and the outlier classes are generated by multi-modal

Gaussian distribution for two datasets viz., MG-2C-2D and FG-2C-2D. Distribu-

tion of MG-2C-2D and the adaptive boundary created by the OS-KOC on this
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dataset for different timestamps are visualized in the Figure 8.9. In the MG-2C-2D

dataset, normal and outlier both show multi-modal behavior alternatively. How-

ever, in FG-2C-2D dataset, multi-modality is only present in the normal class,

which is represented by four distinct Gaussian distribution (The outlier class

has single Gaussian distribution). More detailed visualization of both datasets

as well as behavior of OS-KOC on these datasets are available on these web

pages(https://goo.gl/j2wQw4 and https://goo.gl/8bvkps). OS-KOC outper-

forms incSVDD by more than 3% and OKPCA by nearly 4% of margin. After

2CHT dataset, classifiers yield the least accuracy on MG-2C-2D dataset due to

the presence of multimodality in this dataset.
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Figure 8.9: Adaption on MG-2C-2D dataset

8.3.3 Drift in non-stationary real world datasets

Four real-world datasets are employed for the performance analysis. Electricity

dataset is a well know dataset for streaming data analysis. It is collected from mar-
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kets where the price varies as per demand and supply. The main task here is to

identify the change of the price relative to a moving average of the last 24 hours.

Proposed classifiers clearly outperform static mode based classifiers as well as other

online classifiers available in Table 8.3. In Poker-hand dataset, the original dataset

contains ten classes where one class belongs to non-poker hand and the remaining

classes belong to nine types of poker hands. We club these nine poker hands and treat

them as a single class. The main task here is to identify the poker hand after training

the one-class classifier on non-poker hand. As seen in Table 8.3 and Figure 8.6(g),

OS-AEKOC performs best among all the classifiers for this dataset and both of the

proposed classifiers outperform incSVDD and OKPCA by the significant margin of

more than 3% and 10% respectively.

The third dataset is a Keystroke dynamics dataset, where user verification is based

on the typing rhythm of the user instead of the traditional way (login id and password)

without any extra cost of hardware. We need to update the user profile regularly as

typing rhythm of a user evolves over time, and therefore, the distribution also changes

and drift occurs. The classifier is trained on the data of one user and then the trained

model is used for the verification purpose of that user. As seen in Table 8.3 and Fig-

ure 8.6(h), OS-KOC yields the best accuracy among all and significantly outperforms

OKPCA, however, yields slightly better accuracy compared to incSVDD. The fourth

dataset, i.e. Abalone dataset, contains originally twenty-nine classes, which are con-

verted for the OCC task by considering classes 9-29 as the normal class and class 1-8

as the outlier class. As seen in Table 8.3 and Figure 8.6(i), OS-KOC performs best

among all for this dataset, however, OS-AEKOC performs better than OKPCA but

inferior to incSVDD.

8.3.4 Efficiency Analysis

Time efficiency is the main concern in stream processing for various applications.

The proposed classifiers are very simple and computationally more efficient compared

to other classifiers. Since the presented online classifiers are based on KRR, they

inherit the fast learning property of KRR also. For verifying this fact in an unbiased
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Table 8.2: Accuracy of one-class classifiers over 16 synthetic non-stationary datasets

Datasets OS-
KOC

KOC
(S)

OS-
AEKOC

AEKOC
(S)

incSVDD OKPCA Chunk
Size

Sliding
Window
size

1CDT 95.96 97.73 95.30 97.79 95.85 96.22 50 150

2CDT 89.84 54.38 90.22 54.24 88.17 87.34 50 150

1CHT 94.56 93.16 93.60 93.11 94.89 94.97 50 150

2CHT 80.04 55.64 81.08 55.61 78.06 77.50 50 150

4CR 97.95 69.23 97.58 69.17 97.26 98.34 50 150

4CRE-V1 96.27 71.99 94.74 71.44 96.10 95.40 50 150

4CRE-V2 93.19 67.11 92.26 63.76 92.25 88.68 50 150

5CVT 89.22 68.26 88.41 68.68 88.55 86.38 50 150

1CSurr 96.46 66.00 95.99 66.06 95.70 96.27 50 150

4CE1CF 97.58 97.09 97.12 97.03 96.32 96.75 50 150

FG-2C-2D 88.04 65.78 87.21 66.49 84.72 84.09 50 150

UG-2C-2D 91.22 51.16 90.42 51.13 89.54 89.36 50 150

UG-2C-3D 87.77 53.57 84.84 52.99 87.45 84.11 50 150

UG-2C-5D 84.12 56.09 82.14 56.74 83.10 77.79 50 150

MG-2C-2D 87.99 46.80 86.06 47.56 84.51 83.79 50 150

GEARS
-2C-2D

95.12 84.59 94.89 83.22 92.99 87.37 50 150

Table 8.3: Accuracy of one-class classifiers over real world non-stationary datasets

Datasets OS-
KOC

KOC OS-
AEKOC

AEKOC incSVDD OKPCA Chunk
Size

Sliding
Window
size

Electricity 61.64 55.03 61.49 55.14 61.25 58.67 200 2500

Poker-hand 76.12 49.96 77.18 49.90 73.29 66.95 200 2500

Keystroke 97.38 27.38 96.97 18.83 97.31 85.86 50 150

Abalone 76.73 64.27 70.72 57.66 75.32 66.77 50 150

manner, existing classifiers are implemented and tested in the same environment as the

proposed classifiers. We have reported time consumed by the classifiers in three parts

viz., training, forgetting and testing time in Table 8.4. We are reporting forgetting

time explicitly in Table 8.4 since it is crucial in online learning.
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The reason behind computational efficiency of the proposed algorithms can be

understood by the analysis of (8.18) and (8.19). Recall, the complexity of matrix

inversion and matrix multiplication is O(n3). However, this complexity is further

reduced in three ways. First, if any multiplication algorithm (like Strassen matrix

multiplication) of complexity O(n2+ε) is used, then the complexity of block matrix

inversion is further reduced to O(n2.807) [190]. Second, Woodbury formula [185] is

used to solve (8.18) as shown in (8.19). After using Woodbury formula [185] in (8.19),

the inverse of two matrices, i.e. Ku and Kv are required to be computed. Here, Ku

is the larger matrix of the size of the previous sliding window and Kv is the smaller

matrix of the size of newly added samples for training. As per Algorithm 8.1 and

Algorithm 8.2, K−1
u is already computed during the calculations for the previous

sliding window. Therefore, there is no need to compute K−1
u for the current window

and only the inverse of the smaller size of the matrix Kv needs to be calculated,

which is the third improvement. Similarly, the forgetting mechanism in (8.24) is also

employed by available inverses instead of calculating inverses explicitly. Hence, the

overall computational time cost is further reduced to O(n2). Moreover, Time is also

saved during kernel matrix calculation as it reuses the previously computed kernel

matrix for the data from the previous sliding window. Next, we discuss storage cost.

As presented classifiers are based on online learning, hence, training and testing

can be performed on the fly. It means that there is no need to store any old obsolete

training samples after once it has been processed. Proposed classifiers simply forget

the old samples and adapt to the incoming samples. The number of training samples

that need to be learned by the classifiers in one batch can be fixed using the size of

the sliding window (as per memory constraint of the system). Therefore, the proposed

classifiers are trained with less memory requirement.
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Table 8.4: Training, forgetting and testing time (in sec.) with sliding window size=150
and chunk size = 50

D
at

as
et

s
O
S
-K

O
C

O
S
-A

E
K
O
C

in
c
S
V
D
D

O
K
P
C
A

T
ra

in
in

g
F

or
ge

tt
in

g
T

es
ti

n
g

T
ra

in
in

g
F

or
ge

tt
in

g
T

es
ti

n
g

T
ra

in
in

g
F

or
ge

tt
in

g
T

es
ti

n
g

T
ra

in
in

g
F

or
ge

tt
in

g
T

es
ti

n
g

1
C

D
T

1.
47

0.
64

12
8.

55
1.

40
0.

52
12

6.
51

9.
05

8.
31

15
5.

24
8.

47
6.

83
14

8.
42

2
C

D
T

1.
42

0.
64

12
7.

64
1.

48
0.

59
12

0.
43

8.
40

7.
83

14
2.

28
7.

52
6.

21
13

2.
56

1
C

H
T

1.
41

0.
60

12
6.

13
1.

35
0.

51
12

4.
25

9.
06

8.
35

15
2.

65
8.

13
7.

62
14

2.
03

2
C

H
T

1.
39

0.
64

12
6.

64
1.

44
0.

59
11

9.
50

8.
50

7.
83

14
1.

15
7.

85
6.

73
12

9.
16

4
C

R
11

.4
8

5.
27

11
49

.4
4

12
.2

7
5.

15
10

91
.5

2
37

.3
1

34
.7

1
12

92
.0

2
31

.5
2

28
.8

6
12

14
.3

7

4
C

R
E

-V
1

9.
06

3.
93

87
3.

20
9.

26
3.

66
85

8.
66

32
.0

4
30

.1
3

10
45

.9
2

28
.9

1
25

.4
3

92
4.

82

4
C

R
E

-V
2

13
.8

7
6.

17
13

71
.4

8
14

.3
4

5.
94

13
23

.6
5

46
.8

8
43

.7
6

15
84

.5
7

41
.6

3
39

.1
6

14
89

.7
4

5
C

V
T

1.
83

0.
81

17
0.

08
1.

80
0.

72
16

5.
89

8.
34

7.
88

20
1.

62
7.

29
6.

84
19

0.
29

1
C

S
u

rr
4.

46
1.

90
40

3.
17

4.
26

1.
66

39
4.

50
20

.9
0

19
.3

4
48

0.
99

17
.4

1
15

.8
7

46
2.

38

4
C

E
1
C

F
11

.6
2

5.
06

11
51

.0
0

11
.5

1
4.

57
11

46
.3

0
13

4.
45

11
2.

72
15

42
.8

4
12

3.
28

10
9.

37
13

78
.2

4

F
G

-2
C

-2
D

16
.5

8
6.

64
14

08
.0

4
16

.7
8

6.
25

13
85

.0
0

14
1.

94
12

9.
59

16
85

.9
8

13
3.

26
11

6.
88

14
85

.9
2

U
G

-2
C

-2
D

8.
05

3.
40

72
0.

91
8.

03
3.

15
70

7.
01

54
.7

4
52

.8
6

85
6.

55
42

.8
9

38
.2

7
80

2.
46

U
G

-2
C

-3
D

15
.7

1
6.

48
14

15
.8

0
15

.8
5

6.
25

13
91

.7
3

94
.4

7
86

.0
5

16
93

.6
5

89
.9

2
81

.3
6

14
52

.6
7

U
G

-2
C

-5
D

15
.7

0
6.

41
14

04
.6

2
15

.3
6

5.
93

13
83

.2
4

96
.6

8
89

.4
3

16
88

.5
5

90
.7

3
86

.3
4

15
34

.7
2

M
G

-2
C

-2
D

15
.6

9
6.

57
14

16
.3

3
15

.2
4

5.
86

13
89

.5
2

93
.3

2
83

.8
5

17
01

.9
5

87
.4

8
81

.3
7

16
24

.8
2

G
E

A
R

S
-2

C
-2

D
15

.3
6

6.
39

13
91

.6
9

14
.9

7
5.

77
13

71
.2

6
93

.7
5

84
.7

4
16

82
.4

6
88

.1
7

81
.9

3
15

73
.2

9

E
le

ct
ri

ci
ty

3.
75

1.
62

34
1.

49
3.

71
1.

46
33

4.
26

19
.4

0
17

.1
9

40
4.

73
16

.8
1

14
.8

5
38

1.
43

P
o
k
e
r

76
5.

35
32

9.
13

61
19

.5
1

76
8.

97
34

9.
61

60
45

.7
9

78
9.

16
79

8.
12

70
25

.5
6

72
6.

34
70

5.
87

68
26

.3
1

K
e
y
st

ro
k
e

0.
13

0.
08

10
.6

6
0.

09
0.

04
10

.3
5

0.
43

0.
28

12
.5

5
0.

41
0.

23
11

.0
3

A
b

a
lo

n
e

0.
40

0.
25

32
.8

1
0.

40
0.

16
30

.9
6

2.
79

2.
47

36
.4

7
1.

97
1.

74
33

.1
6

173



8.4 Summary

This chapter has presented online sequential learning with KRR for OCC. Two

methods, viz., OS-KOC and OS-AEKOC, have been developed so far in this chapter,

which are based on boundary and reconstruction frameworks. A forgetting mechanism

is also embedded with these classifiers to remove the impact of obsolete old samples,

which helps in smooth adaptation to the non-stationary environment. The proposed

classifiers can handle data on the fly in an online and efficient manner for both sta-

tionary and non-stationary types of datasets. Performance evaluation over stationary

datasets has exhibited that these online classifiers are equally capable as offline clas-

sifiers. Further, performance evaluation on non-stationary streaming datasets has

exhibited that these classifiers are capable of handling large-sized datasets under sys-

tem memory constraint. The proposed online one-class classifiers either outperformed

existing online one-class classifiers (for most datasets) or yielded similar results (for

some datasets). Overall, boundary framework-based one-class classifiers (OS-KOC)

have performed better compared to reconstruction framework-based one-class clas-

sifiers (OS-AEKOC) as well as state-of-the-art online one-class classifiers. As com-

putational cost is the primary concern in streaming data analysis, evaluation of the

proposed classifiers verified that these are fast and computationally efficient as com-

pared to other classifiers. Hence, it can be stated that the classifiers presented in this

chapter are a viable alternative to the existing one-class classifiers.
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Chapter 9

Conclusions and Future Work

This thesis primarily investigates the iterative (SVM-based) and non-iterative ker-

nel learning-based approach (KRR-based) for outlier detection (i.e., identify the un-

known) using OCC. In particular, we have developed various types of single and multi-

layer methods for OCC using boundary and reconstruction frameworks. First, we have

developed representation learning-based single (AEKOC) and multi-layer (MKOC)

methods for OCC. Then, Multi-layer architecture is developed by stacking multiple

KRR-based Auto-Encoder sequentially. Further, Graph-Embedding has been explored

with this multi-layer architecture (GMKOC) using various types of Laplacian graphs.

After this, we have explored multiple kernel learning approach for one-class classifi-

cation (LMKAD and LMSVDD) where multiple kernels are employed simultaneously

instead of sequentially. We have also extended the proposed single hidden layer-based

architecture based one-class classifier for utilizing privileged information. For this pur-

pose, the LUPI framework has been explored for OCC (i.e., KOC+ and AEKOC+).

Finally, to tackle the challenges of non-stationary data streams, we have extended

two KRR-based one-class classifiers (KOC and AEKOC) for online sequential learn-

ing (OS-KOC and OS-AEKOC). These proposed methods have been tested on various

benchmark datasets and compared results with various kernel-based state-of-the-art

OCC methods. Results analysis exhibits that the proposed methods have outper-

formed existing state-of-the-art kernel-based methods in terms of Gmean (ηg), mean

of Gmean (ηm) and Friedman Rank (ηf ).
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9.1 Summary of Research Achievements

The objectives specified in Section 1.3 have been successfully fulfilled by the fol-

lowing main contributions:

(i) KRR-based Auto-Encoder for OCC: Reconstruction Framework-

based: We proposed a KRR-based Auto-Encoder for OCC (AEKOC) in Chapter

3, which is a reconstruction framework-based classifier. Auto-Encoder helped the

classifier in obtaining a better representation of the data. AEKOC reconstructed

the data at the output layer and computed reconstruction error. The belonging-

ness of a sample to be an outlier or not is decided based on this reconstruction

error and a threshold criterion. The proposed method is less computationally ex-

pensive compared to kernel-based traditional OCC methods (like OCSVM and

SVDD) because it follows the non-iterative approach of learning. The perfor-

mance of AEKOC is compared with 3 boundary framework-based (OCSVM,

SVDD, and KOC) and one-reconstruction framework-based (KPCA) methods.

We have experimented on 23 benchmark datasets to test the performance of

the classifiers. AEKOC exhibited only slightly better performance compared to

OCSVM, SVDD, and KOC in terms of ηm on these datasets. It yielded the

best results for only 6 out of 23 datasets in terms of ηg. When we compared in

terms of ηf , AEKOC yielded better value compared to KOC; however, it didn’t

yield better value compared to OCSVM and SVDD. Hence, the KRR-based one-

class classifier is further improved by combining the concept of boundary and

reconstruction framework in a single architecture.

(ii) Multi-layer KRR for OCC with and without Graph-Embedding:

Boundary and Reconstruction Framework-based: We have explored rep-

resentation learning for multi-layer architecture in Chapters 4 and 5. In Chapter

4, we combined the concept of boundary and reconstruction framework in a sin-

gle architecture and developed a KRR-based multi-layer architecture for OCC

(referred to as MKOC). This multi-layer architecture is constructed by stacking

various Auto-Encoders sequentially. These stacked Auto-Encoders provided a
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better representation of data, and the output of these stacked Auto-Encoders

were passed to a boundary framework-based one-class classifier (KOC). The

output of this architecture was experimented with two types of threshold cri-

teria, namely; θ1 and θ2. Based on these two threshold criteria, we developed

2 variants of MKOC, namely MKOC θ1 and MKOC θ2. We compared the pro-

posed multi-layer architecture-based method with various single hidden layer-

based one-class classifiers on various performance criteria. Both MKOC θ1 and

MKOC θ2 yielded better results compared to the existing methods. Despite its

better performance, both methods collectively yielded the best results for 12 of

23 datasets only in terms of ηg. Therefore, for enhancing the performance of this

multi-layer architecture, the optimization problem of MKOC has been extended

to use structural information between samples in its formulation in Chapter 5.

This structural information is generated by different types of Laplacian graphs

and embedded into the existing multi-layer architecture. This method was re-

ferred to as GMKOC. It was experimented with 4 types of Laplacian graphs

(LE, LLE, LDA, and CDA) and 2 types of threshold criteria (θ1 and θ2). In

this way, we developed 8 variants of GMKOC. Overall, Graph-Embedding-based

multi-layer methods significantly improved the performance of the multi-layer

architecture and collectively yielded the best results for 17 out of 23 datasets in

terms of ηg. Overall, the proposed multi-layer classifiers (MKOC and GMKOC)

collectively yielded the best results for 20 out of 23 datasets in terms of ηg. More-

over, GMKOC with LLE and CDA have emerged as the best classifier in terms

of ηm and ηf , respectively.

(iii) Localized MKL for OCC: Boundary Framework-based: MKL is required

to capture different notions in the data. Unlike the multi-layer-based methods,

the MKL-based method optimizes multiple kernels simultaneously in a single op-

timization function. In Chapter 6, we developed localized MKL-based one-class

classifiers, which assign weights to each kernel based on locality present in the

data. These weights are assigned with the help of a gating function in the op-
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timization problem. This optimization problem is solved by two steps alternate

optimization scheme. We have developed two localized MKL-based one-class

classifiers for anomaly detection. One is developed by taking OCSVM as a base

classifier and known as a localized MKL-based anomaly detector (LMKAD).

Another one is developed by taking SVDD as a base classifier and is known

as localized multiple kernel SVDD (LMSVDD). Further, both methods are ex-

perimented with three types of gating function (viz., Sigmoid (S), radial basis

function (R), and softmax (So)) with two combinations of linear, polynomial

and Gaussian kernels (viz., ’gpp’ and ’gpl’). Overall, we generated 12 variants

by using these gating function and multiple kernels. At this point in this thesis,

we developed mainly 5 one-class classifiers with their 23 variants. Therefore, we

compared all proposed and existing classifiers and observed that localized MKL-

based methods collectively yielded the best results for 20 out of 23 datasets in

terms of ηg. LMSVDD with Softmax gating function and ’gpp’ kernel combina-

tion has emerged as the best classifier among all presented methods in this table

in terms of both performance criteria (ηm and ηf ).

(iv) LUPI framework for KRR-based OCC: Boundary and Reconstruction

Frameworks-based: To handle privileged information, which is generally avail-

able with the training data in real-time, we incorporated KOC and AEKOC with

the LUPI framework. In this way, we developed two one-class classifiers, namely

KOC+ (boundary framework-based) and AEKOC+ (reconstruction framework-

based). The proposed classifiers outperformed existing LUPI-based one-class

classifiers (OCSVM+ and SVDD+). These methods are also computationally

efficient because it was developed based on a non-iterative approach of learning.

(v) Online learning for KRR-based OCC: Boundary and Reconstruction

Frameworks-based: The proposed methods discussed till now only work when

the data is stationary, and the whole data is available for training before it starts.

However, in the real-time scenario, data is available in the form of continuous

streams. These continuous streams can be either stationary or non-stationary. To
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handle this situation, we have enhanced boundary and reconstruction framework-

based one-class classifiers (i.e., KOC and AEKOC) for online sequential learning,

and referred to as OS-KOC and OS-AEKOC. For developing these classifiers, we

introduced the concept of block inverse method and forgetting mechanism with

KOC and AEKOC. The proposed methods have been tested for various types of

drifts in a controlled environment. Proposed classifiers exhibited smooth adap-

tion of drift in a non-stationary environment. They also exhibited better perfor-

mance compared to existing online classifiers (incSVDD and OKPCA) for most

of the datasets and yielded similar results for some datasets. Since computa-

tional cost is the primary concern in streaming data analysis, we have shown

that the proposed classifiers are fast and computationally efficient as compared

to existing online classifiers.

9.2 Future Research Directions

Despite significant progress in the topic of OCC, it can be explored in several

interesting future directions as follows:

(i) Multi-layer multi-kernel learning for OCC: We have developed multi-layer

and multi-kernel learning-based one-class classifier in Chapter 4 and Chapter

6, respectively. Here, one concept explores representation learning, and the

other concept explores learning of different notions of similarity from various

kernels. Both concepts can be combined under the same architecture for im-

proving the performance. This combined architecture can be further developed

for the Graph-Embedding approach to utilize the structural relationship between

the samples.

(ii) Online learning for multi-layer, multi-kernel, and LUPI-based meth-

ods: We have developed various one-class classifiers for offline learning using

various concepts, such as multi-layer, Graph-Embedded multi-layer, localized

MKL, and LUPI. These classifiers can not handle non-stationary and stream-
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ing data. Therefore, these classifiers can be developed for online learning for

handling drift present in the data.

(iii) KRR-based OCC methods for large scale learning using random pro-

jection, sketching and preconditioning: All developed KRR-based one-class

classifiers are only suitable for small-sized datasets. These methods are not suit-

able for large scale datasets due to the high time and memory requirements

of KRR. In KRR, the dimensions of the matrix are the same as the number

of samples in the dataset; therefore, direct methods are unrealistic for large-

scale datasets [94]. Overcoming these limitations of KRR has motivated a

variety of practical approaches, including gradient methods, as well as accel-

erated, stochastic, and preconditioned extensions, to improve time complex-

ity [191, 192, 94, 193, 194, 195]. Random projections provide an approach to

reduce memory requirements using methods like Nystrom approximation [196]

and random features [197]. For a large class of problems, researchers exhib-

ited that computation can be substantially reduced by combining Nystrom or

random features methods, while the same optimal statistical accuracy of exact

KRR is preserved [198, 91, 199, 200, 201]. In recent years, sketching and pre-

conditioning for KRR are also developed for scaling up the KRR for large scale

datasets [94, 195, 202]. By taking a cue from the approaches mentioned above,

proposed KRR-based OCC methods in this thesis can be scaled-up for large-scale

datasets.
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