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ABSTRACT 

 

Knowledge extraction from database is always cumbersome for researchers in various 

disciplines due to presence of missing data. So, missing data is an inevitable problem in many 

disciplines. Various methods have been proposed by many researchers to resolve the missing 

data problem. Many data mining algorithms cannot directly operate on a dataset having missing 

values. In this thesis, we developed several methods for data imputation based on computational 

intelligence and statistical techniques. The thesis contains three modules:  

I. Four data imputation architectures for numerical data based on Extreme Learning 

Machine (ELM), Auto associative neural networks (AANN), Evolving Clustering 

Method (ECM), Principal Component Analysis (PCA) and Gray System Theory (GST). 

II. Two data imputation techniques for numerical data based on covariance matrix, Particle 

Swarm Optimization (PSO), AANN, ELM and ECM. 

III. Two data imputation techniques for numerical data based on AANN, GST and 

Counterpropagation Neural Network (CPNN). 

We first employed auto-associative ELM architecture (developed elsewhere) for imputation. 

Further, since ELM depends heavily on the random weights that connect the input and hidden 

layers, it yields different results in different runs. Sometimes, the results could fluctuate wildly. 

So, in order to overcome the random behavior of ELM, we proposed two new architectures in 

first module. First architecture is a hybrid of ECM and AAELM in tandem and second comprises 

PCA and AAELM in tandem. Both architectures provided deterministic flavour to ELM. We 

also developed an imputation technique based on just a fast clustering algorithm, ECM, and it 

outperformed a hybrid algorithm K-Means+MLP. Since, ECM is controlled by Dthr value; we 

needed to find an optimum Dthr value. Consequently, ECM-AAELM and ECM-imputation 

performed better than earlier methods.. After an exhaustive experiment on ECM-AAELM and 

ECM-Imputation, we observed that selection of Dthr value strongly influences the results. 

Further, we developed a new architecture, ECM_PSO_COV, based on PSO and Covariance 

structure of matrix for selection of optimal Dthr value. . ECM_PSO_COV outperformed earlier 

ECM-imputation technique due to optimal choice of Dthr value. Furthermore, we pass same 
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Dthr value to ECM-AAELM architecture and observed that it provided more accurate 

imputation compared to that of ECM-AAELM. Later, we employed Gray distance based 

imputation technique instead of Mean imputation as a preprocessing task followed by PCA-

AAELM. It also improved the accuracy of PCA-AAELM by a significant amount. Morever, we 

proposed two new hybrids based on CPNN viz., CPAANN and Gray+CPAANN. The proposed 

imputation techniques are tested on 12 benchmark datasets. The results indicate that the 

proposed imputation techniques approximate the missing value to a closest possible value as 

measured by mean absolute percentage error (MAPE). Several experiments have been conducted 

on several regression, classification and banking datasets to assess and compare the effectiveness 

of the proposed imputation techniques. 

 The results of the proposed methods are compared with those of K-Means+ MLP imputation 

(Ankaiah and Ravi, 2011), K-Medoids+MLP, K-Means+GRNN, K- Medoids+GRNN, 

ECM+GRNN (Nishanth and Ravi, 2013) and PSO_Covariance imputation (PSO_COV) 

(Krishna and Ravi, 2013), PSOAANN, PSOAAWNN, RBFAANN and GRAANN (Ravi and 

Krishna, 2014). We tested the effectiveness of all proposed models and implemented models on 

4 benchmark classification and 4 benchmark regression datasets; 3 bankruptcy prediction 

datasets and one credit scoring datasets under 10-fold cross validation testing.  From the 

experiments, we observed that the ECM_PSO_COV+ECM_AAELM and Gray+CPAANN 

provided better predictions for the missing values than the other models. We also performed the 

Wilcoxon signed rank test on our propose models with existing models to check whether our 

obtained results are statistically significantly different or not. It turned out that the obtained 

results by our proposed methods are statistically significant at 1% level of significance. 
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INTRODUCTION 
 

 

 

 

 

 

 

1.1 Data Imputation 

The treatment of missing data or incomplete data is an important step in the pre-processing of 

data. Missing data in real life data sets is an unavoidable problem in many disciplines .In 

statistics data imputation is defined as the substitution of some value for a missing data point or 

a missing component of a data point. For analyzing the available data completeness and quality 

of the data plays a major role, because the inferences made from a complete data are more 

accurate than those made from an incomplete data (Abdella and Marwala, 2005). Once all 

missing values have been imputed then the dataset can be analyzed using standard techniques for 

complete data. Many data mining algorithms cannot directly operate on a dataset having 

incomplete data. The respondents may not give complete information because of negligence, 

privacy reasons or ambiguity of the survey questions. For example researchers rarely find the 

survey data set with complete entries (Hai and Shouhong, 2010). The missing components of 

variables may be important things for analyzing the data. So in this situation data imputation 

plays a major role. Data imputation is also very useful in the control based applications like 

CHAPTER1 
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traffic monitoring, industrial process, telecommunications and computer networks, automatic 

speech recognition, financial and business applications, and medical diagnosis etc. 

1.2 Reasons for missing data 

In almost all the areas of research, the missing data are broadly experienced. There are many 

reasons may lead to missing data. In surveys, data may be missing due to procedural factors such 

as errors in data entry, disclosure restrictions, or failure to complete the entire questionnaire. 

Missing data occur when the response does not apply (e.g., questions regarding the years of 

marriage for a respondent who has never been married). There are also missing data due to 

respondent refusal to answer some sensitive questions (e.g., age, income, drug use), and 

variables too expensive to measure (e.g., interviewer needs to travel a long distance). In control 

based applications such as management of telecommunications and computer networks (Ji and 

Elwalid, 2000) missing values appear due to failures of monitoring or data collector equipment 

and traffic monitoring (Nguyen and Scherer, 2003), industrial process (Lakshminarayana et al., 

2004). Missing data may occur in wireless sensor networks due to reasons like power outrage at 

sensor nodes, random occurrences of local inferences and higher bit error rate of the 

transmission (Halatchev and Gruenwald, 2005; Mohammed et al., 2006).  

Speech samples that are corrupted by very high levels of noise are considered as missing data in 

automatic speech recognition (Cooke et.al., 1994).Incomplete data may also appear in business 

and financial applications. In biological research with DNA microarrays, gene data may be 

missing due to the reasons such as scratch on the slide that contains the gene sample and 

contaminated samples (Troyanskaya et al., 2001). Missing data can also occur as a result of drop 

outs, for example, when an experiment is run on a group of individuals over a period of time as 

in clinical studies. 

1.3 Impact of missing data 

Missing data may result in biased estimates in several ways (Roth et.al, 1999). First, the 

measures of central tendency may be biased upward or downward depending upon where in the 

distributions missing values occur. Second, measures of dispersion may be affected depending 
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upon which part of distribution has missing data. Third, missing data may bias correlation 

coefficients. 

1.4Missing data Mechanisms 

Missing data is categorized into 3 categories they are (i) Missing completely at random 

(MCAR), (ii) Missing at random (MAR) and (iii) Not missing at random (NMAR) (Little and 

Rubin, 2002). 

i) Missing completely at random (MCAR) occurs if the probability of missing value on 

some variable X is independent of the variable itself and also other variables present 

in the dataset.For example, in a dataset that includes student marks, a student's final 

grade is missing, and this does not depend on his/her status (for instance if this is a 

graduate or undergraduate student) or final grade of other students (for instance, if the 

other complete final marks are low or high). 

ii) Missing at random (MAR) occurs if the probability of missing value on some 

variable X is independent of the variable itself, but it can be computed from other 

variables present in the dataset.For example, student's final mark is missing, and this 

does depend on his/her status, but it does not depend on the final grade. Therefore, 

the missing final marks can be filled-in (predicted) using information about the 

student's status. 

iii) Not Missing At Random (NMAR) occurs if the probability of missing value on some 

variable X is dependent on the variable itself. For instance, student's final grade is 

missing, and this does depend on the final grade (i.e., only grades in a special range, 

say 80–90%, are missing). This way, the missing value can be filled-in using the 

complete final marks of the other students. 

1.5 Motivation 

In many real life datasets missing data is present and they are frequent complications of many 

real-world studies. To obtain accurate inferences from the data, the data should be complete. In 

case the dataset contains missing values, the missing values should be imputed before 

performing any further analysis on the data. Statistical and Computational intelligence 
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techniques for data mining applications such as classification, regression, association and outlier 

analysis require accurate and complete data. Data imputation is of great use in such applications 

if the data contains missing values.  

1.6 Objectives 

The main objectives of the research pursued in the thesis are: 

 Development of 4 data imputation architectures for numerical data based on Extreme 

Learning Machine (ELM), Auto associative neural networks (AANN), Evolving 

Clustering Method (ECM), Principal Component Analysis (PCA) and Gray System 

Theory (GST). 

 Development of 2 data imputation techniques for numerical data based on covariance 

matrix, Particle Swarm Optimization (PSO), AANN, ELM and ECM. 

 Development of 2 data imputation techniques for numerical data based on AANN, GST 

and CPNN. 

1.7 Organization of thesis 

The rest of the thesis is organized as follows: 

Chapter 2 presents the literature review on numerical data imputation techniques.  

Chapter 3 presents imputation based on ELM, GST, PCA and ECM. We proposed 4 novel 

imputation techniques viz. PCA-AAELM, ECM-Imputation, ECM-AAELM and Gray+PCA-

AAELM. 

Chapter 4 presents imputation based on ELM, ECM, Covariance matrix and PSO. We proposed 

2 novel methods viz. ECM_PSO_COV and ECM_PSO_COV+ECM-AAELM. 

Chapter 5 presents imputation based on CPNN, AANN and GST.  We proposed 2 novel methods 

viz. CPAANN and Gray+CPAANN. The overall conclusions are presented in Chapter 6. 
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LITERATURE REVIEW 

 

 

 

 

 

2.1 Review of numerical data imputation techniques 

Missing data is an unavoidable problem in real life datasets. The treatment of incomplete data is 

an important step in the preprocessing of data. Missing data handling methods for numerical data 

as shown in Fig. 2.1 (see Annexure) can be broadly classified into four categories: (a) deletion, 

(b) imputation (c) modeling the distribution of missing data and then estimate them based on 

certain parameters and (d) machine learning methods. Each of these techniques is discussed 

below. 

2.1.1 Deletion Procedures 

The missing data ignoring techniques or deletion techniques simply delete the cases that contain 

missing data. Because of their simplicity, they are widely used and tend to be the default choice 

for most statistics packages, but this is not an effective solution. This approach has two forms: (i) 

List wise deletion that omits the cases or instances containing missing values. The main 

drawback of this method is that the application may lead to loss of large number of observations, 

which may result in high error and aggravates further if the original data set itself is too small 

(Song and Shepperd, 2007). (ii) Pairwise deletion method that considers each feature separately. 

CHAPTER2 
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For each feature, all recorded values are considered and missing data ignored. It is good when 

the overall sample size is small or missing data cases are large, (Song and Shepperd, 2007). 

2.1.2 Imputation procedures 

The replacement procedures are easy to perform, and some are included as an option in 

statistical packages. The advantages of these procedures are retention of sample size and 

statistical power in subsequent analysis. The earliest method of imputation is mean imputation, 

in which the missing values of a variable are replaced by the average value of all the remaining 

cases of that variable (Little and Rubin, 2002). The disadvantage of this method is that it ignores 

the correlations between various components (Schafer, 1997). When the variables are correlated, 

data imputation can be done with regression imputation. In regression imputation, regression 

equations are computed each time by considering the attribute containing incomplete value as 

target variable. This method preserves the variance and covariance of missing data with other 

variables. The disadvantage of regression imputation is that it assumes linear relationship 

between the predictors and the missing variable. The technique also assumes that values are 

missing at random.  

Hot and cold deck imputation replaces the missing values with the closest complete components, 

where, closest is in terms of components that are present in both vectors for each case with a 

missing value (Schafer, 1997). The drawback of hot deck imputation is that the estimation of 

missing data is based on single complete vector and thus it ignores the global properties of the 

dataset. The drawback of cold deck imputation is that missing values are replaced with the 

different dataset values (Little and Rubin, 2002).  In multiple imputation procedure, each 

missing value is replaced by a set of reasonable and valid values, so that we get M complete data 

sets by replacing each value M times and by analyzing all datasets after which we can make 

combined inferences. According to Little and Rubin (2002), multiple imputation is better than 

case wise and mean substitution imputation.  

2.1.3 Model-based procedures 

The maximum likelihood approach to analyzing missing data assumes that the observed data are 

a sample drawn from a multivariate normal distribution (Desabro and Green, 1986). The 
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parameters are estimated by available data and then missing values are determined based on the 

estimated parameters. The expectation maximization algorithm is an iterative process Laird 

(1988). The first iteration estimates missing data and then parameters using maximum 

likelihood. The second iteration re-estimates the missing data based on new parameters then 

recalculates the new parameter estimates based on actual and re-estimated missing data (Little 

and Rubin, 2002). 

2.1.4 Machine learning methods 

In K-nearest neighbor (K-nn) approach the missing values are replaced by their nearest 

neighbors.  The nearest neighbors are selected from the complete cases which minimize the 

distance function. Jerez, Molina, Subirates, and Franco (2006) used K-nn for breast cancer 

prognosis. Batista and Monard (2002, 2003) also used K-nn for missing data imputation. Samad 

and Harp (1992) implemented SOM approach for handling the missing data. First the SOM is 

trained using the complete data. Second, when an incomplete pattern is presented to the SOM, its 

image node is chosen ignoring the distances in the missing variables: third, an activation group 

composed of image node’s neighbors is selected; and finally each imputed value is computed 

based on the weights of the activation group of nodes in the missing dimensions.  

In the neural network approach, MLP should be trained as regression model by using the 

complete cases and choosing one variable as target each time. By using appropriate MLP model, 

each incomplete pattern value is predicted.  Several researchers Sharpe and Solly (1995), 

Nordbotten (1996), Gupta and Lam (1996), Yoon and Lee (1999) used MLP for missing data 

imputation. Ragel and Cremilleux (1999) proposed a missing value completion method. This 

method extends the concept of Robust Association Rules Algorithm (RAR) for databases with 

multiple missing values. Imputation using auto-associative neural network (AANN) is another 

machine learning technique. In AANN, the network is trained for predicting the inputs by taking 

same input variable as target (Marseguerra and Zoia, 2002) (Marwala and Chakraverty, 2006). 

Chen et.al, (2008) employed selective bayes classifier for classification on incomplete data with 

a simpler formula for computing gain ratio.  
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Gheyas and Smith (2010) proposed a novel nonparametric algorithm Generalized regression 

neural network Ensemble for Multiple Imputation (GEMI) and also developed a single 

imputation (SI) version of this approach—GESI. The effectiveness of the algorithms is evaluated 

in terms of (i) the accuracy of output classification: three classifiers (a generalized regression 

neural network, a multilayer perceptron and a logistic regression technique) are separately 

trained and tested on the dataset imputed with each imputation algorithm, (ii) interval analysis 

with missing observations and (iii) point estimation accuracy of the missing value imputation. 

Zhang et al. (2011) proposed a simple and efficient nonparametric iterative imputation algorithm 

(NIIA) method to utilize information within incomplete instances (instances with missing values) 

when estimating missing values. It is designed for iteratively imputing missing target values. 

The NIIA method imputes each missing value several times until the algorithm converges. In the 

first iteration, all the complete instances are used to estimate missing values. The information 

within incomplete instances is utilized since the second imputation iteration. 

Figueroa et al. (2011) proposed a method based on an evolutionary algorithm to impute missing 

observations in multivariate data. A genetic algorithm based on the minimization of an error 

function derived from their covariance matrix and vector of means is presented. Nuovo (2011) 

introduced a method based on the most famous fuzzy clustering algorithm: Fuzzy C-Means 

(FCM) and then compared these methodologies in order to highlight the peculiar characteristics 

of each solution. The comparison was made in a psychological research environment, using a 

database of in-patients who have a diagnosis of mental retardation. The results demonstrated that 

completion techniques, and in particular the one based on FCM, led to effective data imputation. 

Ankaiah and Ravi (2011) proposed a hybrid method for data imputation based on the K-means 

and Multi-layer perceptron (MLP). It is a two stage process, in first stage K-means clustering 

algorithm used to impute the missing values and then MLP used in second stage by taking the 

missing variable as target variable and remaining as inputs. 

Yuan Li and Parker (2012) developed a novel Nearest Neighbor (NN) imputation method that 

estimates missing data in Wireless Sensor Networks (WSNs) by learning spatial and temporal 

correlations between sensor nodes. To improve the search time, they utilized a kd-tree data 

structure, which is a non-parametric, data-driven binary search tree. Instead of using traditional 
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mean and variance of each dimension for kd-tree construction, and Euclidean distance for kd-

tree search, they used weighted variances and weighted Euclidean distances based on measured 

percentages of missing data. 

Zhang (2012) proposed a novel k-NN (k nearest neighbor) imputation method to iteratively 

imputing missing data, named Gk-NN (gray k-NN) imputation to deal with heterogeneous (i.e., 

mixed-attributes) data. Gk-NN selects k nearest neighbors for each missing datum via 

calculating the gray distance between the missing datum and all the training data rather than 

traditional distance metric methods, such as Euclidean distance. Such a distance metric can deal 

with both numerical and categorical attributes. 

Nishanth et al. (2012) employed a novel two-stage soft computing approach for data imputation 

to assess the severity of phishing attacks. The imputation method involves K-means algorithm 

and multilayer perceptron (MLP) working in tandem. The hybrid is applied to replace the 

missing values of financial data which is used for predicting the severity of phishing attacks in 

financial firms. After imputing the missing values, performed mining on the financial data 

related to the firms along with the structured form of the textual data using multilayer perceptron 

(MLP), probabilistic neural network (PNN) and decision trees (DT) separately. 

Nelwamondoet.al. (2013) developed a novel technique for missing data estimation using a 

combination of dynamic programming, neural networks and genetic algorithms (GA) on suitable 

subsets of the input data. The proposed approach is applied to an HIV/AIDS database and the 

results shows that the proposed method significantly outperforms a similar method where 

dynamic programming is not used. Tan et.al. (2013) developed a method based on a tensor 

decomposition to estimate the missing value. This approach not only inherits the advantages of 

imputation methods based on matrix pattern for estimating missing points, but also well mines 

the multi-dimensional inherent correlation of traffic data. Experiments demonstrated that the 

proposed method achieves a better imputation performance than the state-of-the-art imputation 

approach even when the missing ratio is up to 90%. 

França et al. (2013) proposed a novel biclustering-based approach to data imputation. This 

approach is based on the Mean Squared Residue metric, used to evaluate the degree of coherence 
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among objects of a dataset, and presents an algebraic development that allows the modeling of 

the predictor as a quadratic programming problem. Aydilek and Arslan (2013) utilized a fuzzy c-

means clustering hybrid approach that combines support vector regression and a genetic 

algorithm. In this method, the fuzzy clustering parameters, cluster size and weighting factor are 

optimized and missing values are estimated. Recently, Nishanth and Ravi [2] proposed four 

hybrid methods, one online and 3 offline methods, to resolve imputation problem. They 

employed ECM with General regression neural network (GRNN) for online imputation, K-

Means and K-Medoids with GRNN and K-Medoids with MLP for offline imputation. Most 

recently, Ravi and Krishna (2014) proposed four new imputation techniques based on AANN 

viz., PSOAANN, PSOAAWNN, RBFAANN and GRAANN. Various imputation techniques 

appeared in literature are presented in Table 2.1 (see Annexure). 
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DATA IMPUTATION METHODS BASED 
ON DETERMINISTIC EXTREME 

LEARNING MACHINE 
 

 

 

 

 

 

This Chapter presents four novel hybrid techniques for data imputation based on Extreme 

Learning Machine (Huang et al., 2004, 2006), Principal Component Analysis (PCA) (Pearson, 

1901 and Hotelling, 1933), Evolving Clustering Method (ECM) (Song and Kasasbov, 2000, 

2001) and Gray System Theory (GST) (Deng, 1982). Those proposed methods are (i) 

Autoassociative ELM (AAELM) with PCA (ii) GST + AAELM with PCA (iii) Evolving 

Clustering based data imputation (iv) AAELM with ECM. Our prime concern with AAELM was 

to introduce deterministic/stabilized AEELM without interrupting its performance, since the 

output of AAELM varies with each run due to random selection of values of parameters. Our 

proposed methods resolved the randomness issue of AAELM and exhibited better performance 

compared to AAELM. This chapter also illustrates the impact of local learning on our results 

through ECM and how ECM assists model to achieve better accuracy. Since the range of 

threshold (Dthr) for ECM could be very large, this chapter endeavored to provide a certain 

bound for the range of Dthr. 11 different activation functions have been employed with our 

CHAPTER3 
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proposed methods and annotated the impact of activation function on our proposed methods. The 

proposed methods were tested on several regressions, classification and banking datasets, using 

10 fold cross validation. The quality of the imputation is tested by using Mean Absolute 

Percentage Error (MAPE) value. The results of the proposed methods are compared with those 

of K-Means+Multilayer perceptron (MLP) imputation (Ankaiah and Ravi, 2011), K-

Medoids+MLP, K-Means+GRNN, K- Medoids+GRNN, ECM+GRNN (Nishanth and Ravi, 

2013) and PSO_Covariance imputation (Krishna and Ravi, 2013). We observed that the 

proposed methods achieved better imputation in most of the datasets as evidenced by the 

Wilcoxon signed rank test to test the statistical significance of the results.  

3.1 Overview of the employed techniques 

The various techniques that are used in our study are extreme learning machine (ELM), evolving 

clustering method (ECM), principal component analysis (PCA) and gray system theory (GST). 

3.1.1 Extreme Learning Machine 

Extreme Learning Machine (Huang et al., 2004, 2006) is a simple and tuning free algorithm. 

Simple math is sufficient for implementing ELM. Autoassociative Extreme Learning Factory 

(AAELF) is essentially an ensemble of several AAELMs. AAELF is named by taking cue from 

Kernel Factory proposed by Ballings and Van den Poel (Ballings and Poel, 2013). Gradient 

descent based algorithms require all the weights be updated after every iteration. Therefore, 

gradient based algorithms are generally slow and may easily converge to local minima. On the 

other hand, ELM, proposed by Huang et al. (2004), randomly assigns the weights connecting 

input and hidden layers; and hidden biases. Then it analytically determines the output weight 

using the Moore-Penrose generalized inverse. It has been proved in (Huang et al., 2003) that 

given randomly assigned input weights and hidden biases with almost any non-zero activation 

function, we can approximate any continuous function on compact sets. Unlike the traditional 

algorithms, ELM not only achieves the minimum error but also assigns the smallest norm for the 

output weights. The reason for using Moore-Penrose inverse is that according to Bartlett’s theory 

(Bartlett, 1998), smaller norm of weights results in better generalization of the feedforward 

neural network. The advantages of ELM over traditional algorithms are as follows: 
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 Simple math is required (Huang et al., 2004). 

 ELM can be up to 1000 times faster than the traditional algorithm (Huang et al., 2004). 

 ELM has better generalization performance as it not only reaches the smallest error but 

also the assigns smallest norm of weights (Huang et al., 2004). 

 Our traditional algorithms work only for differential activation function but ELM also 

works efficiently for many non-differentiable functions (Huang et al., 2004). 

 Both parameters of hidden nodes are fully independent of each other and from the 

training dataset (Huang et al., 2004, 2006). 

 ELM resolves various issues of traditional classic gradient-based algorithms like local 

minima, improper learning rate, overfitting etc. 

The algorithm for the ELM with architecture as shown in Fig. 3.1 (see Annexure) can be stated 

as follows: 

Given training sample N, activation function g(x) and number of hidden neuronsN , 

1. Assign random input weightswiandbiasbi , i = 1 ⋯ N  

2. Calculate the hidden layer output matrix H. 

3. Calculate the output weight β = H†T 

3.1.2Evolving Clustering Method 

ECM is a one-pass, fast clustering method based on normalized Euclidean distances. It can be 

applied in two modes: on-line and off-line mode. The on-line method was employed in (Song 

and Kasasbov, 2000, 2001) for time-series prediction. The off-line ECM is an extension of on-

line ECM i.e. ECM with constrained optimization. We applied on-line ECM for our experiment 

to resolve the problem of missing values. 

Step 0: Create the first cluster center C1 by simply taking the position of the first 

example from the input data stream as the first cluster center Cc1, and setting 

a value 0 for its cluster radius Ru1. 
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Step 1: If all examples of the data stream have been processed, the algorithm is 

finished. Else, the current example xi, is taken and the distances
* Dij, between 

this example and all the n already created cluster centers Ccj, 

        Dij = ||xi – Ccj||, j= 1 to n, are calculated. 

Step 2: If there is a cluster center (centers) Ccj, for j= 1 to n, so that the 

distance value, Dij = ||xi- Ccj|| is equal to, or less than, the radius Ruj, it 

is assumed that the current example xi belongs to a cluster Cm with the minimum 

of these distances: 

             Dim = ||xi – Ccm||= min (Dij), 

             Where: Dij <= Ruj, j= 1 to n. 

        In this case, neither a new cluster is created, nor any existing cluster is 

updated and the algorithm returns to Step 1, else it goes to next step. 

Step 3: Find a cluster Ca (with a center Cca and a cluster radius Rua) from all n 

existing cluster centers through calculating the values Sij= Dij + Ruj, j=1 to n, 

and then select the cluster center Cca with the minimum value Sia: 

        Sia = Dia + Rua = min { Sij }, j=1 to n. 

Step 4: If Sia is greater than 2 * Dthr, the example xi does not belong to any existing 

clusters. A new cluster is created in the same way as described in Step 0, and 

the algorithm returns to Step 1.   

Step 5: If Sia is not greater than 2 * Dthr, the cluster Ca is updated by moving its 

center, Cca, and increasing the value of its radius, Rua. The updated radius 

Rua
new

 is set to be equal to Sia/2 and the new center Cca
new is located on the 

line connecting the new input vector xi and the cluster center Cca, so that the 

distance from the new center Cca
new to the point xi is equal to Rua

new. The 

algorithm returns to Step 1.  

Normalized Euclidean distance is defined as follows:  
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3.1.3 Overview of PCA (Fig. 3.2, see Annexure) 

PCA performs dimensionality reduction, which transforms set of correlated variable to set of 

uncorrelated variable but still possesses most of the information. It generates new set of 

variables, called principal component (Pearson, 1901 and Hotelling, 1933). Each principal 

component is a linear combination of the original variables. All the principal components are 

orthogonal to each other, so there is no redundant information (Pearson, 1901 and Hotelling, 

1933). The full set of principal components is as large as the original set of variables.  

3.1.4 Overview of Gray System Theory 

To select nearest neighbour for imputation, we used Gray Relational Analysis (GRA). GRA is a 

method of Gray System Theory (GST) which is proposed by Deng (1982). GRA measures the 

degree of similarity between two systems (Zhang, 2012 and Tian et al., 2013). Two things are 

needed to be calculated for GRA: 

1. Gray Relational Coefficient (GRC) 

2. Gray Relational Grade (GRG) 

Formula for calculation of GRC: 
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Where,  

mis
kpx is the kth incomplete record  

p is the pth attribute with non-missing values.  

ix  is the ith complete record of the dataset.   
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Formula for calculation of GRG: 
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A larger value of GRG indicates two systems or elements are more similar and smaller value 

indicates less similarity of the systems or elements. 

3.1.4 Overview of Transformation Functions 

Varieties of activation functions have been proposed till date to improve the performance of 

artificial neural network. Activation function provides non-linearity, thereby becoming a 

necessity of neural network. Few activation functions are used in this thesis to show the fact that 

how it affects the output of neural network if activation function is altered. We will see that how 

the output fluctuated drastically due to change of activation function. We used 11 activation 

functions (Table 3.1, see Annexure). Sigmoid, Sin, Sinh (hyperbolic sine), Radial Basis transfer 

function and Gaussian are well-known activation functions. According to Glorot et al. (Glorot et 

al., 2011), Rectifier activation function is more biologically plausible than the popular Sigmoid 

activation function. Softplus activation function (Dugas et al., 2001) is a smooth approximate to 

the Rectifier activation function. Cloglogm is a new activation function, which is proposed by 

Gomes et al. (Gomes et al., 2011). Cloglogm is modified complementary log-log function and 

non-constant monotonically increasing function. Another variation of Sigmoid is a Bipolar 

Sigmoid function (Karlik and Olgac, 2001), it performed well for those types of application 

which produce output values in the bound of [-1, 1]. We used a Hardlim (Hard Limit) activation 

function; it is capable of separating an input space into two categories (0 and 1). 

3.2 Architecture of the proposed methods 

in this chapter, four novel methods have been proposed for data imputation task based on above 

discussed techniques. 
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3.2.1 Algorithm for Autoassociative Extreme Learning Factory 

Until now ELM has been used extensively in two fields, classification and regression problems. 

This chapter will show the extension of ELM as an Autoassociative ELM (AAELM) and use it 

in data imputation. An AAELF is constructed by ensemble of several AAELMs. Architecture of 

AAELM (Fig. 3.3, see Annexure) consists of three layers namely input layer, hidden layer and 

output layer, which is same as the input layer. The number of hidden nodes in the hidden layer is 

an arbitrary constant defined by the user. Each input node in the input layer is connected to each 

node in the hidden layer and each hidden node is connected to the each of the node in the output 

layer. So, we used Extreme Learning Machine to train the 3-layered auto associative neural 

network. The architecture of the AAELF is shown in Fig. 3.3 (see Annexure). The training 

algorithm for AAELF of data imputation is as follows: 

1. Normalize the dataset in the range of [0, 1]. 

2. Impute the missing value in the dataset based on Mean imputation. 

3. Select the number of hidden nodes distribution for hidden nodes and activation function. 

4. Initialize randomly the weight values between the input and hidden layers in the range of 

[0, 1]. The output nodes contain the input variables as the target variables thereby 

bringing in the auto associative concept. 

5. Calculate the hidden layer output matrix H. 

6. Calculate the output weight β. 

β = H†T 

7. Calculate mean absolute percentage error (MAPE) value to measure the quality of the 
imputation Flores (1986): 
 

MAPE =
100

n
  

xi − xi 

xi
 

n

i=1

 

Where, n is the number of missing values in a given dataset, xi   is predicted by the 

proposed AAELF for the missing values and xi is the actual value. 

8. Repeat steps 2 to 5 for 10 times for each combination of weight distribution and 

activation function. 
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Since ELM depends heavily on the random weights that connect the input and hidden layers, it 

yields different results in different runs. Sometimes, the results could be fluctuate wildy. The 

same arguments hold good for AAELM also. Hence, in order to circumvent the fluctuations in 

results, AAELF is designed. AAELF is essentially an ensemble of 10 independent runs of the 

AAELM on the same dataset. Since 10 different AAELMs are ensemble, the AAELM is called 

the AAELF. As the input weights and hidden biases can be chosen randomly, we have used 

random number following Uniform, Normal and Logistic distributions. Sigmoid and Gaussian 

activation functions are used in the hidden layer. So, we constructed the AAELF ensemble for 

each of the six possible combinations.  

In order to overcome random behavior of Ensembled AAELM, following methods have been 

proposed: 

 PCA-AAELM 

 ECM based Imputation 

 ECM-AAELM 

 Gray+PCA-AAELM 

3.2.2 Algorithm of the proposed Method: PCA-AAELM (Fig. 3.4, see Annexure) 

A new technique is proposed by hybridization of autoassociative neural network, ELM and 

Principal Component Analysis (PCA) as shown in Fig. 3.4 (see Annexure). 

1. Normalize the data in the range of [0, 1]. 

2. Apply Mean Imputation on incomplete dataset. 

3. Perform PCA with the complete set of records. 

4. Selects the maximum number of hidden nodes by determining the amount of principal 

components is necessary to explain the variance in the data. 

5. Perform non-linear transformation on scores, the scores are the data formed by 

transforming the original data into the space of the principal components and apply 

Moore-Penrose generalized inverse after non-linear transformation to obtain  H† . 
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6. Finally, the estimation of output layer weights is done as proposed by Huang et al. 

(2003), by solving the linear system Hβ = T using the Moore-Penrose generalized 

inverse.  

7. Compute the mean absolute percentage error (MAPE) (Flores, 1986) value: 

MAPE =
100

n
  

xi − xi 

xi
 

n

i=1

 

Where, n is the number of missing values in a given dataset, xi   is predicted by the 

proposed method, PCA-AAELM, for the missing values and xi is the actual value. 

3.2.3 Algorithm of the proposed Method: ECM based Imputation (Fig. 3.5, see Annexure) 

ECM is one of the simplest unsupervised learning algorithms, which aids to solve missing data 

problem by its substantial local learning capability. The procedure of imputation is as follows: 

1. Normalize the data in the range of [0, 1]. 

2. Apply Mean Imputation on incomplete dataset. 

3. Divide a dataset in two parts: sets of complete and incomplete records. 

4. Perform ECM with the set of complete records and identify all the cluster centers. 

5. Attribute value, say xk, in an incomplete record is imputed by the corresponding value of 

the attribute in the center of the nearest cluster by measuring the Euclidean distance 

between the incomplete record excluding the missing value and the cluster centers 

excluding the value in the same position. The Euclidean distance is measured by using 

the following formula: 

2

;1




n

kii jcixjD
 

Where, j   –   Number of cluster centers. 

n – Number of complete components in each record. 

6. To measure the effectiveness of the imputation, compute the mean absolute percentage 

error (MAPE) (Flores, 1986) for incomplete records. 
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3.2.4 Algorithm of the proposed Method: ECM-AAELM (Fig. 3.6, see Annexure) 

1. Normalize the data in the range of [0, 1]. 

2. Divide a dataset in two parts: sets of complete and incomplete records. 

3. Perform ECM with the set of complete records and identify all the cluster centers. 

4. Attribute value, say xk, in an incomplete record is imputed by the corresponding value of 

the attribute in the center of the nearest cluster by measuring the Euclidean distance 

between the incomplete record excluding the missing value and the cluster centers 

excluding the value in the same position. The Euclidean distance is measured by using 

the following formula: 

a. 
2

;1




n

kii jcixjD  

b. Where, j   –   Number of cluster centers. 

i. n – Number of complete components in each record. 

5. Calculate the normalized Euclidean distance from each cluster center, which is presented 

as hidden nodes. 

6. Perform non-linear transformation by the activation function on above distance and apply 

Moore-Penrose generalized inverse after non-linear transformation to obtain  H† .  

7. Finally, the estimation of output layer weights is done as proposed by Huang et al. 

(2003), by solving the linear system Hβ = T using the Moore-Penrose generalized 

inverse.  

8. Compute the mean absolute percentage error (MAPE) value for missing values. 

3.2.5 Algorithm for the proposed Method: Gray+PCA-AAELM (Fig. 3.7, see Annexure) 

A new technique is proposed by hybridization of Gray System Theory, autoassociative neural 

network, ELM and Principal Component Analysis (PCA) as shown in Fig. 3.7 (see Annexure). 

1. Normalize the data in the range of [0, 1]. 

2. Apply Gray distance based imputation instead of Mean imputation on incomplete dataset. 
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3. Rest of the procedure is similar to PCA-AAELM (from Step 3 to Step 7). 

3.3 Experimental design 

Datasets are divided into two parts: one is set of complete records and other is set of incomplete 

records. Complete records have been used for training process and incomplete records have been used for 

testing process. We also perform 10-fold cross validation in our experiment. Number of incomplete 

records are 10 % of the total records. Further, we calculated MAPE for missing values in incomplete 

records. We also performed statistical testing in order to verify the statistical significance of our obtained 

result from the proposed methods (Lowry; Wilcoxon, 1945; Siegel, 1956). Wherever, we employed ELM 

in our proposed methods, we deployed 11 activation functions with those proposed methods. We 

employed 11 activation functions as a part of our experiment to study the impact of activation function on 

our proposed methods. We also compared the average MAPE values of the proposed methods with those 

of K-Means+ MLP imputation (Ankaiah and Ravi, 2011), K-Medoids+MLP, K-Means+GRNN, K- 

Medoids+GRNN, ECM+GRNN (Nishanth and Ravi, 2013) and PSO_Covariance imputation (Krishna 

and Ravi, 2013). 

3.4 Results and discussions 

We applied the proposed methods viz., PCA-AAELM, Gray+PCA-AAELM, ECM-Imputation, 

ECM-AAELM on several datasets and compared our outcomes from various methods viz., K-

Means+MLP, K-Medoids+MLP, K-Means+GRNN, K-Medoids+GRNN and PSO_COV. The 

effectiveness of the proposed and existing methods for data imputation is tested on 4 regression, 

4 classification and 4 banking datasets. We used 10 fold cross validation on all datasets and we 

used MAPE values to find the quality of the imputation. The average MAPE values obtained 

over 10-fold cross validation for the proposed method is presented in the Table 3.2, 3.3 and 3.4 

(see Annexure). For online data imputation, the number of clusters obtained by ECM is dictated 

by a parameter known as the distance threshold Dthr. The Dthr value that yielded the best 

reduction in MAPE is obtained by varying the large range of Dthr value from 0.001 to 0.999, in 

steps of 0.001 and the least MAPE value thus obtained is tabulated. We kept same Dthr value for 

all folds. Similarly, PCA, which was employed in PCA-AAELM, has a parameter known as 

variance, which is accountable for the selection of necessary principal components for the 

dataset. The value of variance that yields the least MAPE is selected by varying this parameter 
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from 0.01 to 0.99 and the corresponding MAPE value is tabulated. In Gray+PCA-AAELM, a 

crucial parameter is ]1,0[  , we kept its value as 0.5 for all datasets.  

3.4.1 Performance analysis of various activation functions 

In all proposed methods viz., ECM-AAELM, Gray+PCA-AAELM, PCA-AAELM, activation 

function played crucial role to minimize the MAPE value. 

In case of ECM-AAELM, It can be easily observed by the Table 3.2 (see Annexure) and Fig. 

3.8(b) (see Annexure) that Hardlim activation function exhibited worst performance compared to 

other activation functions. For 3 out of 12 datasets viz., Forest fire, Prima Indian, UK credit, 

performance of Hardlim activation function is substantial. Except UK bankruptcy dataset, ECM-

AAELM yielded satisfactory results for 10 out of 11 activation compared to other proposed 

methods. Only Hardlim activation function did not perform well with ECM-AAELM. Tribas 

activation function yielded best result among all activation function because it exhibited least 

MAPE value for 6 out of 12 datasets compared to other activation functions. MAPE values of 

Tribas activation function are merely more than 1% for rest of the 5 datasets, which can be easily 

observed in Table 3.2 (see Annexure). 

 In case of PCA-AAELM (Table 3.3 and Fig. 3.8(a), see Annexure), we obtained similar 

observation regarding Hardlim activation function as obtained in case of ECM-AAELM. For 4 

out of 12 datasets viz., Forest fire, Prima Indian, Spectf, UK credit, performance of Hardlim 

activation function is substantial.  It performed worst among all activation functions however, 

one surprised result obtained by employing this activation function with PCA-AAELM that it 

provided least MAPE value compared to all activation functions for UK credit dataset. Softplus 

activation function yielded least MAPE value among all activation functions and its MAPE 

value is nearly 1% more than the best value obtained by all activation function for 5 datasets. 

Sigmoid, Sinh, Bsigmoid, Hardlim, Radbas and Softplus activation function yielded least MAPE 

value for 2 datasets, 1 dataset, 2 datasets, 1 dataset, 2 datasets and 4 datasets respectively. Rest 

of the 3 activation functions viz., Cloglogm, Sine and Tribas were no be able to obtain least 

MAPE value for any of the 12 datasets. 
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In case of Gray+PCA-AAELM, we obtained similar observation regarding Hardlim activation 

function as obtained in case of ECM-AAELM and PCA-AAELM (Table 3.4 and Fig. 3.8(c), see 

Annexure). For 4 out of 12 datasets viz., Forest fire, Prima Indian, Spectf, UK credit, 

performance of Hardlim activation function is substantial. However, it did not yield least MAPE 

value for any of the 12 datasets. Both Softplus and sigmoid activation function yielded least 

MAPE value for 4 datasets among all activation functions. A variation of Sigmoid activation 

function viz., Bsigmoid activation function achieved least MAPE value for 3 datasets and 

Radbas yielded least MAPE value for 1 dataset. Rest of the 5 activation functions viz., Sinh, 

Cloglogm, Sine, Hardlim, Tribas, were not be able to obtain least MAPE value for any of the 12 

datasets. 

3.4.1 Performance analysis of our proposed methods vs. hybrid methods presented in the 

Table 3.5 (see Annexure) 

We employed our proposed methods on 12 datasets and calculated the average MAPE value 

over 10 fold cross validation experiment on all datasets. Our all experimented results are 

presented in Table 3.5 (see Annexure). Following are the comparative discussion between our 

proposed methods vs. hybrid methods viz., K-Means+ MLP imputation (Ankaiah and Ravi, 

2011), K-Medoids+MLP, K-Means+GRNN, K- Medoids+GRNN, ECM+GRNN (Nishanth and 

Ravi, 2013) and PSO_Covariance imputation (Krishna and Ravi, 2013): 

For Auto MPG dataset, Gray+PCA-AAELM yielded best outcomes among all the 4 proposed 

methods and all the existing methods presented in the Table 3.5 (see Annexure) except K-

Medoids+GRNN. The difference of MAPE value between Gray+PCA-AAELM and K- 

Medoids+GRNN is 0.26 only. A drastic reduction of 11.71% in MAPE value is observed by 

employing Gray distance based imputation at first stage and PCA-AAELM at second stage. The 

MAPE is reduced from 28.63% (PCA-AAELM) to 16.92% (Gray+PCA-AAELM). PCA-

AAELM is worst performer among all proposed methods for this dataset. 

For the Body fat dataset, the MAPE value is observed less than 10% for all the proposed 

imputation techniques. PCA- AAELM outperformed 5 existing methods presented in the Table 

3.5 (see Annexure) viz., K-Means+MLP, K-Means+GRNN, K-Medoids+MLP and PSO_COV. 
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The MAPE is reduced from 6.01% to 5.41% by employing Gray Distance based imputation at 

first stage and PCA-AAELM at second stage. The MAPE value is reduced further from 5.41% to 

5.33% by employing ECM with AAELM (ECM-AAELM). ECM-AAELM yielded best 

outcomes among all the proposed methods and existing methods listed in Table 3.5 (see 

Annexure). 

For the Boston housing dataset, PCA-AAELM yielded less MAPE value compared to K-

Means+MLP and PSO_COV but outperformed by rest of the methods. The value of MAPE is 

reduced from 20.9% to 17.46% by employing Gray distance based imputation in first stage and 

PCA-AAELM at second stage. It outperformed all the existing methods presented in the Table 

3.5 (see Annexure). It also yielded better results compared to our two proposed methods viz., 

PSO_COV and PCA-AAELM. The MAPE value is further reduced from 17.46% to 16.48% by 

employing ECM_AAELM instead of Gray+PCA-AAELM and it outperformed all the existing 

methods listed in the Table 3.5 (see Annexure). PSO_COV performed worst among all the 

methods presented in the Table 3.5 (see Annexure). 

In regards to the Forest Fire dataset, all three proposed methods viz., ECM-AAELM, PCA-

AAELM and Gray+PCA-AAELM, outperformed all methods proposed by Ankaiah and Ravi 

(2011) & Nishanth and Ravi (2013). PCA-AAELM yielded least MAPE value among all three 

proposed methods. 

For the Iris dataset, ECM-AAELM yielded best outcomes and PCA-AAELM yielded worst 

outcomes among all the methods listed in the Table 3.5 (see Annexure). The MAPE value is 

reduced from 10.23% to 5.79% by employing Gray+PCA-AAELM instead of PCA- AAELM. 

Gray+PCA-AAELM yielded better outcomes compared to all the earlier methods listed in the 

Table 3.5 (see Annexure) except ECM-Imputation. 

For the Prima Indian dataset, Gray+PCA-AAELM is the best performer among all the 

methods listed in the Table 3.5 (see Annexure). The MAPE value is reduced from 23.95% to 

22.06% by employing PCA-AAELM instead of ECM- AAELM. The MAPE value is further 

reduced from 22.06% to 22.03% by employing Gray Distance based imputation at first stage and 
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PCA-AAELM at second stage. So, our proposed methods outperformed all the existing methods 

listed in Table 3.5 (see Annexure) for this dataset. 

For the Spanish dataset, the MAPE value is reduced from 30.09% to 28.06% by employing 

Gray+PCA-AAELM instead of PCA-AAELM. It outperformed all methods except K-

Medoids+GRNN. The MAPE value is drastically reduced from 30.09% to 22.09% by employing 

ECM-AAELM instead of PCA-AAELM. ECM-AAELM performed better compared to all the 

methods listed in the Table 3.5 (see Annexure). 

For Spectf dataset, our all three proposed methods viz., ECM-AAELM, Gray+PCA-AAELM, 

PCA-AAELM, outperformed all the existing methods presented in the Table 3.5 (see Annexure). 

The MAPE value is reduced from 9.11% to 8.38% by employing Gray distance based imputation 

at first stage and PCA-AAELM at second stage. ECM-AAELM performed best among all the 

proposed and existed methods listed in Table 3.5 (see Annexure). 

For Turkish dataset, the value of MAPE is reduced from 30.18% to 27.38% by employing 

Gray distance based imputation at first stage and PCA-AAELM at second stage instead of PCA-

AAELM only. A drastic reduction of 8.69% in MAPE value is observed by employing 

ECM_AAELM instead of PCA-AAELM. ECM-AAELM outperformed all the existing methods 

except K-Medoids+GRNN presented in the Table 3.5 (see Annexure). However, remaining two 

proposed methods are outperformed by all proposed methods presented by Ankaiah and Ravi 

(2011) & Nishanth and Ravi (2013). But PCA-AAELM performed better than only one method 

PSO_COV and Gray+PCA-AAELM performed better than PSO_COV and ECM-Imputation. 

For UK bankruptcy dataset, there are no proposed methods, which performed well compared 

to any of the methods presented in the Table 3.5 (see Annexure). But as we experienced earlier 

ECM-AAELM performed better than ECM-Imputation. 

For UK Credit dataset, PCA-AAELM yielded least MAPE value among all proposed methods. 

PCA-AAELM outperformed 4 existing methods presented in the Table 3.5 (see Annexure) viz., 

K-Means+MLP, K-Means+GRNN, K-Medoids+MLP and PSO_COV. It also performed better 

than ECM-Imputation. The MAPE value is reduced from 26.85% to 25.27% by employing PCA-

AAELM instead of ECM-AAELM.  
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For the Wine dataset, Gray+PCA-AAELM is the best performer among all the proposed 

methods. The MAPE value is reduced from 16.6% to 14.78% by employing Gray Distance 

based imputation at first stage and PCA-AAELM at second stage. ECM-AAELM and 

Gray+PCA-AAELM outperformed all the methods except K-Medoids+GRNN. Nevertheless, 

difference of MAPE value between K-Medoids+GRNN and both of the proposed methods, 

ECM-AAELM and Gray+PCA-AAELM, is only 0.13 and 0.03 respectively. 

We also performed the Wilcoxon two-tailed signed rank test at 1% level of significance to test 

the statistical significance of the results. The Wilcoxon test values for all the proposed methods 

are presented in Table 3.6, 3.7 and 3.8 (see Annexure). Wilcoxon test is not performed with 

AAELM as the proposed imputation techniques outperformed it by a large margin. The critical 

value from the table for N=10 is 3 at 1% level of significance. According to the Wilcoxon signed 

rank test, the obtained value is statistically significant if it is equal or smaller than the critical 

value from the table (www.sussex.ac.uk/Users/grahamh/RM1web/WilcoxonTable2005.pdf). 

Therefore, by observing the obtained values of the proposed and existed methods, we conclude 

that the obtained values from proposed methods are statistically significant compared to existing 

methods for all datasets  

Following points have to be noted from above discussion: 

i. ECM-Imputation alone outperformed many existing hybrid methods for various datasets. 

ii. When we compare ECM imputation with ECM+GRNN then ECM imputation 

outperformed ECM+GRNN for 6 datasets. This shows that if appropriate Dthr would not 

be applied then even hybridization with ECM could lead to large MAPE value. 

iii. For UK bankruptcy dataset, even Mean imputation outperformed all the methods 

proposed in this chapter. 

iv. When we employed Gray distance based imputation with PCA-AAELM then the 

performance of Gray+PCA-AAELM degraded for 3 datasets viz., Forest fire, UK 

bankruptcy and UK Credit. Otherwise, Gray distance aided PCA-AAELM to enhance its 

performance for rest of the 9 datasets. 

http://www.sussex.ac.uk/Users/grahamh/RM1web/WilcoxonTable2005.pdf
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v. When we closely observe the MAPE value of ECM-Imputation and ECM-AAELM.  

ECM-AAELM always improved the accuracy for all datasets due to insertion of the 

concept of global approximation with ECM-Imputation through AAELM. 

vi. ECM-AAELM and Gray+PCA-AAELM performed best among our four proposed 

methods. 

vii. It is recommended to use Softplus activation function for PCA-AAELM and Gray+PCA-

AAELM. 

viii. ECM-AAELM outperformed PCA-AAELM for 9 out of 12 datasets because ECM-

AAELM has strong local learning capability due to ECM and PCA does not perform any 

local learning task, it simply does linear transformation of the data. 

ix. MAPE values fluctuated wildly from one activation function to other activation function 

in case of PCA-AAELM and Gray+PCA-AAELM. In contrast, MAPE values of ECM-

AAELM are not oscillating wildly except Hardlim activation function. 

x. We experimented on a large range of 999 threshold values from 0.001 to 0.999, in steps 

of 0.001, in order to see which value of Dthr performs better compared to other methods. 

When we observe the graph from Fig. 3.9(a) (see Annexure), we conclude that 

approximately after 0.399, MAPE values are constant irrespective of any threshold value 

which is greater than 0.399. These graphs are depicted for the behavior of the Sigmoid 

activation function on ECM-AAELM over a large range of Dthr values for 12 datasets. 

We experimented similar for all activation functions over a large range of Dthr value 

from 0.001 to 0.999 and experienced the same result as discussed above. 

xi. Hardlim activation function did not perform well for any of the proposed methods 

compare to other activation function in most of the cases.  

xii. It can be observed in Hardlim activation function graph (Fig. 3.9(b), see Annexure); its 

MAPE values yielded same MAPE value from start to end irrespective of increasing 

Dthr values. Therefore, Hardlim activation function is not benefitted by variation of 

threshold values in ECM. 

xiii. We did not discuss the results of AAELM because all 3 proposed methods outperformed 

it by a large margin. It can be observed in Table 3.9 (see Annexure). 
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3.5 Conclusion 

In this chapter, we proposed four new imputation algorithms for data imputation viz., PCA-

AAELM, Gray+PCA-AAELM, ECM-Imputation and ECM-AAELM imputation. We conclude 

that ECM-AAELM can be used for online data imputation regardless of any activation function 

except Hardlim activation function because variation of activation function did not impact wildly 

on this method and it is best among our all four proposed methods. In contrast, Softplus 

activation function is recommended for PCA-AAELM and Gray+PCA-AAELM due to better 

imputation capability compared to other activation functions, which has been employed so far in 

our experiment. The results demonstrate that there is a significant reduction in MAPE after 

employing gray distance based imputation instead of Mean imputation with PCA-AAELM. Our 

proposed algorithms are fast but user’s intervention is required for selection of two parameters, 

Dthr for ECM to get better performance. Our next chapter will be focused on selection of 

optimal parameters value without altering predictive efficiency of the algorithm.  
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DATA IMPUTATION BASED ON 
OPTIMIZED EXTREME LEARNING 

MACHINE 
 

 

 

In this chapter, we will resolve the problem emerged in our previous chapter. Two novel hybrid 

methods have been proposed for data imputation using Evolving Clustering method (ECM), 

Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995) with covariance matrix and 

Autoassociative Extreme Learning Machine (AAELM). The results of the proposed method is 

compared with those of K-Means+ MLP imputation (Ankaiah and Ravi, 2011), K-

Medoids+MLP, K-Means+GRNN, K- Medoids+GRNN, ECM+GRNN (Nishanth and Ravi, 

2013) and PSO_Covariance imputation (PSO_COV) (Krishna and Ravi, 2013), PSOAANN, 

PSOAAWNN, RBFAANN and GRAANN (Ravi and Krishna, 2014). We will also compare our 

results from ECM imputation and ECM-AAELM in order to see the impact of optimal Dthr 

value on the proposed methods. Our proposed methods preserved the covariance structure of the 

data as PSO_COV and as well as yielded better performance compared to PSO_COV in most of 

the datasets. We also resolved the issue emerged in previous chapter that user intervention is 

required for selection of Dthr value in ECM based imputation. In our proposed model, we 

CHAPTER4 
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employed PSO for finding the optimal Dthr value and to minimize the two errors in a nested 

form (i) Mean squared error between the covariance matrix of the set of complete records and 

the covariance matrix of the set of total records including imputed ones. (ii) Absolute difference 

between the determinants of the two covariance matrices. The concept of local learning and 

global approximation are hybridized by using ECM and AAELM techniques in order to obtain 

more accurate imputation. Further we also performed a statistical testing to ensure the credibility 

of our result, which is yielded by our proposed methods. 

4.1 Overview of the employed techniques  

In the proposed method, we used Evolving clustering method (ECM), Autoassociative Extreme 

learning machine (AAELM), Particle swarm optimization (PSO), covariance matrix and 

determinant of covariance matrix. Whereas, we already discussed ECM and AAELM in previous 

chapter. We also employed 11 activation functions for one of the proposed methods. We already 

discussed these transformation functions in previous chapter, so no need to discuss here. So we 

will discuss here only PSO algorithm. 

4.1.1 Particle swarm optimization  

 Particle Swarm Optimization is an evolutionary computation based global optimization 

algorithm based on flocking of birds was proposed by Kennedy and Eberhart in the year 1995 

(Kennedy and Eberhart, 1995). This is a population-based technique where each solution is 

defined by a particle in the population. Here, each particle is represented by its respective 

positions and velocities in the N dimensional solution space. PSO algorithm operates in three 

phases:  

1) Initialization phase 2) Velocity and Particle position updation phase 3) Termination phase 

 In the initialization phase, each particle is randomly initialized to some set of positions and 

velocities. Each particle is associated with a neighborhood best or local best (Plb) which indicates 

the best fitness value attained by the particle in its path. The best particle fitness attained by the 

movement of entire group of particles in the solution space is the global best (Pgb) which forms 

the final solution once the termination criteria is met.  
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In the second phase, each particle velocity updated dynamically with respect to its position (xold) 

by using local best (Plb) and global best (Pgb) as follows: 

𝑉𝑛𝑒𝑤 = 𝑤 ∗ 𝑉𝑜𝑙𝑑 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑 ∗  𝑝𝑙𝑏 − 𝑥𝑜𝑙𝑑  + 𝑐2 ∗ 𝑟𝑎𝑛𝑑 ∗  𝑝𝑔𝑏 − 𝑥𝑜𝑙𝑑             (1) 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝑉𝑛𝑒𝑤                                      (2) 

 where c1 and c2 are two predefined positive constants also known as acceleration 

coefficients, w is the inertia weight value, rand is a random number generated from uniform 

distribution U(0,1). Eberhart and Shi (2000) suggested the value of the parameters, w, C1 and C2 

are 0.7298, 1.49618, 1.49618 respectively. 

The algorithms finally terminates once the convergence criteria is met. Convergence criteria can 

be any fixed number of iterations or some other criteria based on the problem requirement. 

4.2 Architecture of the proposed methods 

We proposed two imputation methods based on the AAELM, ECM and particle swarm 

optimization (PSO) algorithm to minimize the error function derived from their covariance 

matrix and determinant of their covariance matrix.  

4.2.2 Algorithm of the Proposed Method: ECM_PSO_COV 

Total data records (Xt) are needed to divide in two parts viz; complete data records (Xc) and 

incomplete records (Xic) to train the model. As we discussed above, our proposed algorithm will 

have some resemblance with PSO_COV method (Krishna and Ravi, 2013) in terms of fitness 

function. However, other than fitness function. It is completely different methodology. The 

algorithm for the proposed method, which is based on the ECM, covariance matrix and PSO of 

the data points, is as follows: 

 Compute the covariance matrix for the complete data records (Xc). Covariance matrix 

will be always a square matrix. As an example, if order of matrix is (k x n) then the order 

of the covariance matrix (Xcov) is (n x n). 

 Performed ECM on complete data records (Xc) with randomly initialized Dthr value by 

PSO to obtain cluster centers. 
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 Performed ECM imputation for the missing records or incomplete records (Xic) in the 

total records (Xt) of the dataset as mentioned in previous section. 

 Compute the covariance matrix for the total data records (Xt) after ECM imputation of 

missing records. If total records (Xt) is order of (m x n) matrix then the covariance matrix 

(Tcov) of total records (Xt) will be a square matrix of  order (n x n). 

If  

(MSE (Xcov, Tcov) < ϵ) and (|Det(Xcov)-Det(Tcov)|< ϵ)    (5) 

then exit.  

Otherwise, invoke the PSO for selecting other Dthr value. 

Where,  

ϵ - Small positive value;  

MSE (Xcov, Tcov) - Mean squared error between Xcov and Tcov.  

Det(Xcov) - Determinant of the covariance matrix Xcov and 

Det(Tcov) - Determinant of the covariance matrix Tcov.  

Two fitness functions has been used to determine the convergence criteria viz., MSE 

(Xcov, Tcov) and | Det(Xcov) -Det(Tcov) |. 

 Repeat the above two steps until convergence. 

 Thus, in this chapter, PSO is used to minimize the two error functions in a nested form (i) 

Mean squared error between the covariance matrix of the set of complete records and the 

covariance matrix of the set of total records including imputed ones. (ii) Absolute difference 

between the determinants of the two covariance matrices. The algorithm is designed to stop only 

when these two errors become very small across two consecutive iterations. Fig. 4.1 (see 

Annexure) depicts the flow chart of the proposed algorithm. After completion of the process, the 

model yields optimum Dthr value for which fitness function has a minimum difference. 

Afterwards, estimate the missing values using ECM imputation with the optimized Dthr value. 

Mean absolute percentage error (MAPE) is used to quantify the quality of prediction. By 

comparing the covariance of complete data records and the total data records after data 

imputation, our proposed method preserved the covariance structure of the data similar to 

PSO_COV (Krishna and Ravi, 2013). 
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4.2.2 Algorithm of the Proposed Method: ECM_PSO_COV+ECM-AAELM (Fig. 4.2, see 

Annexure): 

1. Normalize the data in the range of [0, 1]. 

2. Divide a dataset in two parts: sets of complete and incomplete records. 

3. Perform ECM with the set of complete records and identify all the cluster centers. 

4. The Dthr value applied with ECM_PSO_COV+ECM-AAELM Method is obtained by our 

previous proposed method ECM_PSO_COV. 

5. Perform ECM imputation based on step 6 instead of Mean imputation. 

6. Attribute value, say xk, in an incomplete record is imputed by the corresponding value of 

the attribute in the center of the nearest cluster by measuring the Euclidean distance 

between the incomplete record excluding the missing value and the cluster centers 

excluding the value in the same position. The Euclidean distance is measured by using 

the following formula: 

2

;1




n

kii jcixjD  

Where, j   –   Number of cluster centers. 

n – Number of complete components in each record. 

7. Calculate the normalized Euclidean distance from each cluster center, which is presented 

as hidden nodes. 

8. Perform non-linear transformation by the activation function on above distance and apply 

Moore-Penrose generalized inverse after non-linear transformation to obtain  H† .  

9. Finally, the estimation of output layer weights is done as proposed by Huang et al. 

(2004), by solving the linear system Hβ = T using the Moore-Penrose generalized 

inverse.  

10. Compute the mean absolute percentage error (MAPE) for missing values. 
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4.3 Experimental Design 

Datasets are divided into two parts: one is set of complete records and another is set of 

incomplete records. Complete records have been used for training process and incomplete 

records have been used for testing process. We also perform 10-fold cross validation in our 

experiment. Number of incomplete records are 10 % of the total records. We applied the ECM 

algorithm on the complete dataset and missing values of the attribute in incomplete records were 

imputed by the corresponding value of the attribute of the nearest cluster center. For selection of 

optimal Dthr value in ECM for each fold of the dataset, we applied PSO optimization algorithm 

and two fitness functions employed as mentioned by Krishna and Ravi (2013) in their paper. The 

value of maximum population and maximum generation size are 30 and 100 respectively. 

Further, we supplied same Dthr value to ECM-AAELM. Further, we calculated MAPE for 

missing values in incomplete records. We also performed statistical testing in order to verify the 

statistical significance of our obtained result from the proposed methods. In case of 

ECM_PSO_COV+ECM-AAELM, we deployed 11 activation functions as a part of our 

experiment to study the impact of activation function on the proposed method. So, 11 activation 

functions have been applied with different folds of dataset with the proposed method 

ECM_PSO_COV+ECM-AAELM and best result is utilized to compare our result to the result of 

other existing methods. We also compared the average MAPE values of the proposed methods 

with those of K-Means+ MLP imputation (Ankaiah and Ravi, 2011), K-Medoids+MLP, K-

Means+GRNN, K- Medoids+GRNN, ECM+GRNN (Nishanth and Ravi, 2013) and 

PSO_Covariance imputation (PSO_COV) (Krishna and Ravi, 2013), PSOAANN, PSOAAWNN, 

RBFAANN and GRAANN (Ravi and Krishna, 2014). We will also compare our result of the 

proposed methods of previous chapter in order to see the impact of optimized Dthr value. 

4.4 Results and Discussions 

Our proposed methods (ECM_PSO_COV & ECM_PSO_COV+ECM-AAELM) are 

implemented and tested in MATLAB using computer running under Windows 7 environment 

with Intel processor. Following discussion will evince the better performance of the proposed 

algorithms over various hybrid methods by Ankaiah and Ravi (2011), Nishanth and Ravi (2013), 

Krishna and Ravi (2013), Ravi and Krishna (2014). We also compared our results from the 
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results of ECM imputation and ECM-AAELM. This comparison exhibits that how ECM 

imputation is efficiently dictated by optimal Dthr value in case of both the proposed methods. 

We also observed that how hybrid of local learning and global approximation outperformed all 

the existing methods presented in the Table 4.1 (see Annexure) for most of the datasets. Results 

of the proposed and existing methods are presented in the Table 4.2 (see Annexure).  

Table 4.1 (see Annexure) shows the impact of various activation functions on 

ECM_PSO_COV+ECM_AAELM. After a close observation of Table 4.1 (see Annexure) and 

Fig. 4.3 (see Annexure), we concluded that Sigmoid is the best performer and Hardlim activation 

function is the worst performer among all activation functions. Hardlim (Hard Limit) activation 

function didn’t perform well because it separates an input space into two categories (0 and 1) 

based on following function: 

Hardlim (n) = 1, if n ≥ 0 

                           0, otherwise 

A. Auto Mpg Dataset 

ECM_PSO_COV method outperformed all the existing methods presented in the Table 4.2 (see 

Annexure). Only results of three hybrids viz; K-Medoids + GRNN, ECM + GRNN and 

GRAANN are nearby our proposed method. Accuracy of K-Medoids + GRNN, ECM + GRNN 

and GRAANN is lagged by 1.31%, 1.65% and 0.19% from ECM_PSO_COV respectively. It can 

be easily observed that ECM_PSO_COV performed better by optimal selection of Dthr 

parameter compared to ECM_Imputation for Auto_Mpg dataset.  

When we passed the same obtained Dthr value by ECM_PSO_COV to ECM-AAELM then it 

reduced the error from 15.35% to 14.39%. So, it is obvious that 

ECM_PSO_COV+ECM_AAELM outperformed all existing and also one of our proposed 

methods, ECM_PSO_COV. 
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B. Body Fat Dataset 

For this dataset also, our proposed method ECM_PSO_COV outperformed all the existing 

methods presented in the Table 4.2 (see Annexure) except GRAANN. ECM_PSO_COV lagged 

by merely 0.35% from GRAANN. ECM_Imputation did not yield better accuracy due to lack of 

optimal selection of Dthr value for Body Fat dataset.  

Our other proposed method, ECM_PSO_COV+ECM_AAELM, and GRAANN performed 

equally. But it outperformed other existing methods and one of the proposed methods, 

ECM_PSO_COV. 

 C. Boston Housing Dataset 

In the case of Boston Housing dataset, all methods are significantly outperformed by the 

proposed method. All existing methods except GRAANN in the Table 4.2 (see Annexure) have 

at least 3% more MAPE value compared to ECM_PSO_COV. Even, the difference of MAPE 

values between ECM_PSO_COV and various methods are more than 10%. A reduction of 

3.34% in MAPE is observed when optimal Dthr value has been applied using ECM_PSO_COV 

instead of ECM_Imputation. Performance of GRAANN is only nearby our proposed method for 

this dataset. Difference of MAPE value between ECM_PSO_COV and GRAANN is only 

0.88%.  

After employing ECM+AAELM with optimum Dthr value obtained by ECM_PSO_COV then 

MAPE value is further reduced by 0.32%. Since accuracy of ECM_PSO_COV+ECM_AAELM 

is better than ECM_PSO_COV, so, it also outperformed all the methods listed in Table 4.2 (see 

Annexure). 

D. Forest Fire Dataset 

In regards to the Forest Fire Dataset, similar performance is observed as observed in Boston 

Housing Dataset. Except GRAANN, all the methods in the Table 4.2 (see Annexure) have at 

least 4% more MAPE value compared to ECM_PSO_COV. Accuracy of GRAANN is lagged by 

0.13%. A reduction of 3.96% in MAPE is observed when ECM_PSO_COV has been applied 

instead of ECM_Imputation. 
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Our second proposed method, ECM_PSO_COV+ECM_AAELM outperformed 

ECM_PSO_COV and obviously, it significantly outperformed all the methods presented in the 

Table 4.2 (see Annexure). 

E.  Iris Dataset 

All the existing methods in the Table 4.2 (see Annexure) are outperformed by the proposed 

method. Except ECM + GRNN, ECM imputation and GRAANN, all the methods presented in 

the Table 4.2 (see Annexure) have at least 3% more MAPE value compared to 

ECM_PSO_COV. The MAPE is reduced from 5.27 to 4.82 by applying optimal Dthr value 

obtained by our proposed method ECM_PSO_COV instead of ECM_Imputation. 

Further, we employed our other proposed method, ECM_PSO_COV+ECM_AAELM; 

outperformed ECM_PSO_COV by merely 0.07% and obviously, it outperformed all the existing 

methods presented in the Table 4.2 (see Annexure). 

F. Prima Indian Dataset 

In regards to the Forest Fire Dataset, ECM_PSO_COV outperformed all the existing methods 

presented in the Table 4.2 (see Annexure) except PSOAANN, PSOAAWNN and GRAANN, 

proposed by Ravi and Krishna (2014). 2.58% of reduction in MAPE value is observed by 

applying ECM_PSO_COV instead of ECM_Imputation. 

When we deployed our second proposed method, ECM_PSO_COV+ECM_AAELM, 1.20% of 

reduction in MAPE value has been observed compared to ECM_PSO_COV. It is outperformed 

by only one method, PSOAANN (Ravi and Krishna, 2014) among all the existing methods 

presented in the Table 4.2 (see Annexure). 

F. Spanish Dataset 

This dataset showed that how much wildly an appropriate Dthr value could influence the result 

of imputation using ECM_PSO_COV. A drastic reduction of 11.25% in MAPE value is 

observed by applying optimized Dthr value using ECM_PSO_COV compared to 

ECM_Imputation. This is an exemplary dataset, which showed that optimal selection of Dthr 
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value improved the accuracy of imputation. It also showed that an inappropriate selection of 

Dthr value could lead to totally wrong result. Except K-Medoids + GRNN and GRAANN, all 

the existing methods presented in the Table 4.2 (see Annexure) have 11% more MAPE value 

compared to ECM_PSO_COV. 

When we employed ECM_PSO_COV+ECM_AAELM then MAPE value further reduced from 

20.73% to 16.99% as compared to ECM_PSO_COV. Except K-Medoids + GRNN and 

GRAANN, all the existing methods in the Table 4.2 (see Annexure) have at least 15% more 

MAPE value compared to ECM_PSO_COV+ECM_AAELM. K-Medoids + GRNN and 

GRAANN have 9.02% and 6.29% more MAPE value respectively. 

G. Spectf Dataset 

For this dataset, accuracy of K-Medoids + MLP, K-Means + GRNN, K- Medoids + GRNN, 

ECM + GRNN, ECM_Imputation and PSO_COV are merely lagged by 0.80%, 0.76%, 0.37%, 

0.50%, 0.36% and 0.49% respectively from ECM_PSO_COV. But other methods viz; K-Means 

+ MLP, and all the methods proposed by Ravi and Krishna (2014), except GRAANN, are 

significantly outperformed by ECM_PSO_COV. However, GRAANN outperformed 

ECM_PSO_COV by 1.44% less MAPE value. 

When we compared performance of existed methods with ECM_PSO_COV+ECM_AAELM 

then we observed that our proposed method outperformed all existed and proposed method 

presented in Table 4.2. (see Annexure) Except GRAANN, all the existing methods presented in 

the Table 4.2 (see Annexure) have at least 2% more MAPE value compared to 

ECM_PSO_COV+ECM_AAELM. 

H. Turkish Dataset 

In regards to the Turkish dataset, again a drastic reduction in MAPE value, from 27.90% to 

19.28%, is observed when we employed ECM_PSO_COV instead of ECM_Imputation. Only 

one method, K-Medoids + GRNN yielded similar accuracy to our proposed method. Its accuracy 

is lagged by only 0.06%. Except GRAANN, our proposed method outperformed rest of the 

methods by significant amount. GRAANN performed better than ECM_PSO_COV. 
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When we employed ECM_PSO_COV+ECM_AAELM then MAPE value further reduced from 

19.28% to 16.49% as compared to ECM_PSO_COV. It outperformed all existed and proposed 

method presented in the Table 4.2 (see Annexure). Except GRAANN, ECM+GRNN and K-

Medoids+GRNN, all 9 methods presented in the Table 4.2 (see Annexure) have at least 9% more 

MAPE value compared to ECM_PSO_COV+ECM_AAELM. 

I. UK Bankruptcy Dataset 

Our proposed method performed worst for this dataset compared to the other 5 existing methods 

listed in the Table 4.2 (see Annexure). 5 methods viz., K-Medoids + MLP, K-Means + GRNN, 

K- Medoids + GRNN and ECM + GRNN outperformed ECM_PSO_COV by significant 

amount. Accuracy of K-Means + MLP is only 0.02% more than ECM_PSO_COV. Result of this 

dataset shows that optimal selection of Dthr will always improve the accuracy of imputation by 

ECM. A drastic reduction of MAPE value has been observed for this dataset when we employed 

ECM_PSO_COV instead of  ECM_Imputation. 

When we deployed our second proposed method, ECM_PSO_COV+ECM_AAELM, 4.09% of 

reduction in MAPE value has been observed compared to ECM_PSO_COV. But this method 

outperformed all other methods except GRAANN. It is just lagged by 0.04% of accuracy 

compared to GRAANN. 

J. UK Credit Dataset 

For this dataset also, three of the methods viz; K-Medoids + GRNN, ECM + GRNN and 

GRAANN outperformed ECM_PSO_COV by significant amount. Otherwise, ECM_PSO_COV 

performed well compared to other existing methods, which are presented in the Table 4.2 (see 

Annexure).  

Our second proposed method, ECM_PSO_COV+ECM_AAELM outperformed 

ECM_PSO_COV and other 10 existing methods presented in the Table 4.2 (see Annexure). 

Only two methods, ECM + GRNN and GRAANN, outperformed 

ECM_PSO_COV+ECM_AAELM. 
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K. Wine Dataset 

In regards to the Wine dataset, our proposed methods outperformed all the methods presented in 

the Table 4.2 (see Annexure). It can be observed that accuracy improved by significant amount 

compared to the other methods by employing ECM_PSO_COV based imputation. 2.85% of 

reduction in MAPE has been observed when we employed ECM_PSO_COV based imputation 

instead of ECM_Imputation. 

When we deployed our second proposed method, ECM_PSO_COV+ECM_AAELM, 0.54% of 

reduction in MAPE value has been observed compared to ECM_PSO_COV. Since it 

outperformed ECM_PSO_COV, so, it is obvious that it outperformed all the existing and 

proposed methods presented in the Table 4.2 (see Annexure).  

Wilcoxon two-tailed signed rank test is also performed at 1% level of significance to test the 

statistical significance of the results. We performed Wilcoxon test with K-Means+ MLP 

imputation (Ankaiah and Ravi, 2011), K-Medoids+MLP, K-Means+GRNN, K- 

Medoids+GRNN, ECM+GRNN (Nishanth and Ravi, 2013) and PSO_Covariance imputation 

(PSO_COV) (Krishna and Ravi, 2013) and GRAANN (Ravi and Krishna, 2014). Table 4.3 (see 

Annexure) and Table 4.4 (see Annexure) represent the results of Wilcoxon signed rank test for 

ECM_PSO_COV and ECM_PSO_COV+ECM-AAELM respectively. The critical value from 

the table (www.sussex.ac.uk/Users/grahamh/RM1web/WilcoxonTable2005.pdf) for N=10 is 3 at 

1% level of significance. According to the Wilcoxon signed rank test, if the computed value is 

less than or equal to the critical value, then it is statistically significant. This test assured that the 

result obtained by our proposed method is statistically significant. We didn’t perform Wilcoxon 

test on PSOAANN, PSOAAWNN and RBFAANN because differences of MAPE values 

between proposed methods and these methods are very large.  

4.5 Conclusion 

Two novel methods have been proposed in this chapter and effectiveness of these methods are 

tested by experimentation on 12 datasets. Our conducted experiment evinced the following facts: 

http://www.sussex.ac.uk/Users/grahamh/RM1web/WilcoxonTable2005.pdf
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(i) ECM_PSO_COV and ECM_PSO_COV+ECM-AAELM always aided to improve the 

accuracy of imputation by selecting optimal Dthr value for ECM imputation and 

ECM-AAELM respectively. 

(ii) Our proposed methods, ECM_PSO_COV performed better for 6 out of 12 datasets 

and ECM_PSO_COV+ECM-AAELM didn’t perform well for only 3 out of 12 

datasets in comparison to the other existing hybrid methods presented in the Table 

4.2 (see Annexure). 

(iii) ECM_PSO_COV outperformed three methods PSO_COV (Krishna and Ravi, 2013), 

RBFAANN (Ravi and Krishna, 2014) and ECM_Imputation for all 12 datasets. 

However, ECM_PSO_COV+ECM-AAELM outperformed 9 methods for all datasets. 

(iv) One of the methods proposed by us, ECM_PSO_COV preserved covariance structure 

of the original data like PSO_COV however, other existing methods, except 

PSO_COV, did not necessarily preserve the covariance structure of the original data. 

Indeed, ECM_PSO_COV outperformed PSO_COV by a large margin in majority of 

the dataset.  

(v) ECM_PSO_COV+ECM-AAELM outperformed our another proposed method 

ECM_PSO_COV for all datasets and 9 other existing methods which is presented in 

the Table 4.2 (see Annexure). 

(vi) ECM_PSO_COV exhibited better imputation capability due to strong local learning 

capability and appropriate selection of Dthr value.  

(vii) ECM_PSO_COV+ECM-AAELM exhibits the fact that how a hybrid of local 

learning and global approximation assisted our proposed method to obtain better 

accuracy in imputation. 

(viii) It resolved the issue raised in previous chapter that ―user intervention was required to 

select optimized Dthr value for ECM_Imputation algorithm‖. No more user 

intervention is required to select optimized Dthr for ECM_Imputation in our 

proposed methods. 



50 
 

Based on above remarks, we can conclude that the proposed approach can be used as viable 

alternative for the data imputation. There is one drawback with our proposed method ―It has long 

runtime during selection of optimal Dthr value‖. Future works would be concentrated on 

reducing the runtime of the proposed methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

 

 

 

Data Imputation Based On Counter-
Propagation Neural Network 

 

 

 

Various researchers have applied autoassociative neural network to resolve data imputation 

problem. In this chapter, we also hybridized the concept of autoassociativity with Counter-

propagation neural network (CPNN) (Hecht-Nielsen, 1987) and proposed two novel methods. 

We proposed two novel hybrid methods for data imputation task using Counter-propagation 

neural network, Gray System Theory (Deng, 1982) and Autoassociative neural network. Novelty 

of our proposed methods is in this term also, that, no one applied CPNN before to resolve 

missing data problem. Performance of our proposed methods has been tested on 12 different 

datasets and the results of both the proposed methods are compared with those of K-Means+ 

MLP imputation (Ankaiah and Ravi, 2011), K-Medoids+MLP, K-Means+GRNN, K- 

Medoids+GRNN, ECM+GRNN (Nishanth and Ravi, 2013) and PSO_Covariance imputation 

(PSO_COV) (Krishna and Ravi, 2013) and PSOAANN, PSOAAWNN, RBFAANN & 

GRAANN (Ravi and Krishna, 2014). Statistical testing has been also performed to ensure the 

reliability of our obtained results from our proposed methods.  

CHAPTER5 
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5.1 Overview of the employed techniques  

 In the proposed method, we used Counter-propagation neural network (CPNN), 

Autoassociative neural network and Gray system theory (GST). Whereas, we already discussed 

Gray system theory in earlier chapter, so please refer to Chapter 3 for GST. Therefore, we will 

discuss here only CPNN algorithm. 

5.1.1 Overview of Counter-propagation neural network 

 Counter-propagation neural network (Hecht-Nielsen, 1987) is a combination of 

unsupervised and supervised learning i.e. semi supervised learning as shown in Fig. 5.1 (see 

Annexure). Unsupervised layer contains Self organization map (SOM) (Kohonen, 1988) and 

supervised layer contains Grossberg Outstar layer. Hecht-Nielsen proposed it in 1987. Two 

variation of CPNN exists: 

1. Forward only CPNN 

2. Full CPNN (Bidirectional CPNN) 

CPNN uses a special learning technique: competitive learning, which is also called as winners-

takes-it-all. Competitive learning works on the concept that if a node wins during training for 

one pattern of input then it will always respond as a winner for a similar pattern of input. CPNN 

is also similar to feed forward network in the sense that each input node is connected from each 

node in hidden layer and each node of hidden layer is connected from each node of output node. 

But it is different in terms of connection of hidden layer nodes. Inhibitory inter-connections 

among hidden layer nodes are used to conduct a competition for winners when training patterns 

are presented at the input layer (Mehrotra, 1996). Inhibitory inter-connections among hidden 

layer nodes are clearly depicted in Fig. 5.2 (see Annexure). Flow diagram of CPNN is depicted 

in Fig. 5.3 (see Annexure). This neural network has been successfully deployed for various 

purposes like digital image copyright authentication (Chang et al., 2010), data compression, 

approximation, classification tasks etc. It is heavily used by chemometric community in last 

decades. It is the first time, when we are employing CPNN for imputation task.  
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Various toolboxes have been developed to apply CPNN in various fields. Kuzmanovski and 

Novič (2008) developed a CPNN toolbox to handle CPNN using MATLAB (MATLAB version 

7.10.0, 2010). They integrate the freely available toolbox of SOM (Vesanto et al., 2000; Vesanto, 

1999) with their code for developing a CPNN toolbox. It can be downloaded from internet for 

free (http://www.cis.hut.fi/projects/somtoolbox/). Ballabio et al. (2009) developed ―The 

Kohonen and CP-ANN toolbox‖ for handling both SOM and CPNN in 2009. This toolbox is 

available with interactive graphical user interface. It also added the module of Genetic algorithm 

for selection of optimized network setting. It is feely available on internet 

(http://www.disat.unimib.it/chm) with extensive description of toolbox with various examples. 

We opted the CPNN toolbox developed by Kuzmanovski and Novič (2008). We offer our 

sincere thanks to I. Kuzmanovski for sending the code of CPNN toolbox with examples. 

5.2 Architecture of the proposed methods 

Two novel imputation techniques have been proposed based on various existing methods viz., 

counter-propagation neural network, autoassociative neural network and gray system theory 

(GST). 

5.2.1 Algorithm of the Proposed Method: Counter-propagation Auto-associative Neural 

Networks (CPAANN): 

Earlier, Ravi and Krishna (2014) also employed the concept of auto-associativity with General 

regression neural network and deployed General regression auto-associative neural network 

(CPAANN) to resolve missing data problem. We also deployed the concept of Auto-

associativity in similar fashion for CPNN and proposed a new technique to resolve missing data 

problem. Novelty of this technique is also in the term that no one applied CPNN before to 

resolve the missing data problem. Fig. 5.4 (see Annexure) depicts the architecture CPAANN. 

Auto-associative Neural Networks is a feedforward network, where input and output both are 

identical. In similar way, input and output are identical in CPAANN. By comparing Fig. 5.4 (see 

Annexure) from Fig. 5.2 (see Annexure), you will easily observe that number of output nodes in 

both diagrams is different. In Fig. 5.4 (see Annexure), number of output nodes and input nodes 

http://www.cis.hut.fi/projects/somtoolbox/
http://www.disat.unimib.it/chm
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are same as well as identical but it is not necessary in traditional CPNN (as shown in Fig. 5.2, 

see Annexure). Fig. 5.5 presents flow diagram of our proposed method. 

Algorithm: 

1. Divide the dataset in two parts, complete and incomplete. 

2. Perform training on complete records only. 

3. Weights of both the layers adjusted during training by using following function 

(Kuzmanovski and Novič, 2008): 

)).(().( ,,,
old

ijicj
old

ij
new

ij wxddatww  
                 (1) 

)).(().( ,,,
old

ijicj
old
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new
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                 (2) 

Where, 

ix = Input variables. 

jw = neurons in the Kohonen layer. 

(dj −dc )= Topological distance between the winning neuron c and the neuron j which 

weights are adjusted.  

old
ijw , = Weights before adjustment in Kohonen layer. 

new
ijw , = Weights after adjustment in Kohonen layer. 

old
iju , = Weights before adjustment in output layer. 

new
iju , = Weights after adjustment in output layer. 

)(t = Learning rate 

4. Selected parameters in CPNN toolbox are mentioned in Table 5.1 (see Annexure). 

5. Perform Mean Imputation on Incomplete dataset. 

6. Pass incomplete dataset after mean imputation through CPAANN with adjusted weight 

during training. 
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5.2.1 Algorithm of the Proposed Method: Gray+Counter-propagation Auto-associative Neural 

Networks (Gray+CPAANN): 

In CPAANN, we performed Mean imputation before applying the incomplete records to 

the neural network and in Gray+CPAANN; we performed Gray distance based imputation 

instead of Mean imputation before presenting the incomplete records to CPAANN. Flow chart 

of this method is given in Fig. 5.6 (see Annexure). 

1. Normalize the dataset in the range of [0 1]. 

2. Divide the dataset in two parts: complete and incomplete records. 

3. Impute missing records using Gray distance based nearest neighbour imputation. 

4. Training procedure is same as previous proposed method CPAANN. 

5. Pass Gray distance based imputed records to CPAANN. 

5.3 Experimental Design 

Datasets are divided into two parts: one is set of complete records and another is set of 

incomplete records. Complete records have been used for training process and incomplete 

records have been used for testing process. We performed 10-fold cross validation in our 

experiment. Number of incomplete records are 10 % of the total records. We compared the 

average MAPE values of the proposed methods with those of K-Means+ MLP imputation 

(Ankaiah and Ravi, 2011), K-Medoids+MLP, K-Means+GRNN, K- Medoids+GRNN, 

ECM+GRNN (Nishanth and Ravi, 2013) and PSO_Covariance imputation (PSO_COV) 

(Krishna and Ravi, 2013), PSOAANN, PSOAAWNN, RBFAANN and GRAANN (Ravi and 

Krishna, 2014). Further, we performed statistical testing to verify the significance of our 

obtained results from the proposed methods. 

5.4 Results and Discussions 

Our both proposed methods have been applied on 12 datasets and also compared our results 

from the results of various existing methods presented in the Table 5.2 (see Annexure). Stage I 

denotes the Gray_Imputation in the last column of the Table 5.2 (see Annexure). An extensive 

discussion on comparison of our proposed methods from various methods is mentioned below: 
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In case of Auto Mpg dataset, CPAANN outperformed 7 out of 10 methods and accuracy of 

CPAANN is lagged by 1.66%, 1.32%, 2.78%, 0.29% from K-Medoids+GRNN, ECM+GRNN, 

GRAANN respectively. However, when we employed Gray distance based nearest neighbour 

imputation (Gray_Imputation) on Stage I instead of Mean Imputation then our new proposed 

method Gray+CPAANN outperformed all 11 existing methods in the Table 5.2 (see Annexure). 

So, MAPE value is reduced from 18.32% to 15.31% when we employed Gray_Imputation on 

Stage I instead of Mean Imputation with CPAANN. 

In regards of Body fat dataset, our one of the proposed method, CPAANN outperformed all 

the existing methods presented in the Table 5.2 (see Annexure) except GRAANN. It is lagged by 

0.64% from GRAANN. However, our second method, Gray+CPAANN performed better than 

all existed methods in the Table 5.2 (see Annexure) including our one of the proposed method 

CPAANN. MAPE value is reduced from 18.32% to 15.31% when we employed 

Gray+CPAANN instead of CPAANN. 

For Boston Housing dataset, our both methods outperformed all the existing methods 

presented in the Table 5.2 (see Annexure). Except GRAANN, accuracy of all the methods is 

lagged by at least 2.5% from both proposed methods. Here, CPAANN alone performed better 

than Gray+CPAANN. However, Gray+CPAANN is lagged by only 0.15% from CPAANN. 

In case of Forest fire dataset, performance of our both the proposed methods are similar to 

Boston Housing dataset. They also outperformed all the existing methods presented in the Table 

5.2 (see Annexure) and CPAANN alone performed better than Gray+CPAANN. However, 

Gray+CPAANN is lagged by only 0.94% from CPAANN. Except GRAANN, accuracy of all 

methods is lagged by at least 4% from both proposed methods. 

In case of Iris dataset, CPAANN outperformed 8 out of 10 methods for this dataset and 

accuracy of CPAANN is lagged by 0.21%, 0.76%, 1.24% from ECM+GRNN, GRAANN and 

respectively. While, our second proposed method, Gray+CPAANN outperformed all the 

presented methods in the Table 5.2 (see Annexure). MAPE value is reduced from 6.51% to 

4.03% when we employed Gray_Imputation on Stage I instead of Mean Imputation with 

CPAANN. 
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For Prima Indian dataset, performance of our both the proposed methods is similar to Boston 

Housing and Forest fire dataset. They also outperformed all the  

existing methods in the Table 5.2 (see Annexure). However, CPAANN alone performed better 

than Gray+CPAANN but Gray+CPAANN is lagged by only 1.13% from CPAANN.  Except 

PSOAANN, accuracy of all methods is lagged by at least 5% and 4% from CPAANN and 

Gray+CPAANN respectively. Accuracy PSOAANN is lagged by 3.51% and 2.38% from 

CPAANN and Gray+CPAANN respectively. 

In case of Spanish dataset, both the proposed methods outperformed all the methods presented 

in the Table 5.2 (see Annexure) by significant amount. Except K-Medoids+GRNN and 

GRAANN, accuracy of all the methods is lagged by at least 14% from both proposed methods. 

Even, accuracy of K-Medoids+GRNN and GRAANN is lagged by significant amount 8.88% 

and 6.15% respectively from CPAANN and 11.80% and 9.07% respectively from 

Gray+CPAANN. When we employed Gray_Imputation on Stage I instead of Mean Imputation 

with CPAANN, the MAPE value is further reduced from 17.13% to 14.21%. 

For Spectf dataset, both the proposed methods outperformed all the existing methods presented 

in the Table 5.2 (see Annexure) except GRAANN. Accuracy of CPAANN and Gray+CPAANN 

is lagged by 0.20% and 0.12% respectively from GRAANN. When we employed 

Gray_Imputation on Stage I instead of Mean Imputation with CPAANN the MAPE value is 

reduced from 8.61% to 8.53%. 

In regards of Turkish dataset, CPAANN outperformed all the existing methods presented in 

the Table 5.2 (see Annexure) by significant amount. Except K-Medoids+GRNN, ECM+GRNN 

and GRAANN, accuracy of all the methods is lagged by at least 10.83% from CPAANN. Even, 

accuracy of K-Medoids+GRNN, ECM+GRNN and GRAANN is lagged by significant amount 

3.27%, 6.27% and 1.18% respectively from CPAANN. However, our second proposed method 

Gray+CPAANN outperformed all the methods except GRAANN. Accuracy of Gray+CPAANN 

is lagged by 0.12% from GRAANN. Except K-Medoids+GRNN, ECM+GRNN and GRAANN, 

accuracy of all the methods is lagged by at least 8.53% from Gray+CPAANN. Even, accuracy of 

K-Medoids+GRNN and ECM+GRNN is lagged by significant amount 1.97% and 4.97% 
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respectively from Gray+CPAANN. CPAANN alone performed better than Gray+CPAANN but 

Gray+CPAANN is lagged by only 1.30% from CPAANN. 

For UK Bankruptcy dataset, performance of our both the proposed methods are similar to 

Spanish dataset. Both the proposed methods outperformed all the existing methods presented in 

the Table 5.2 (see Annexure) by significant amount. Except GRAANN, accuracy of all the 

methods lagged by at least 6.43% and 7.81% from CPAANN and Gray+CPAANN respectively. 

Even accuracy of GRAANN is lagged by 4.89% and 6.27% from CPAANN and 

Gray+CPAANN respectively. When we employed Gray_Imputation on Stage I instead of Mean 

Imputation with CPAANN then MAPE value is reduced from 21.96% to 20.58%. 

For UK Credit dataset, CPAANN outperformed 8 out of 10 methods for this dataset and 

accuracy of CPAANN is lagged by 0.95% and 2.41% from ECM+GRNN and GRAANN 

respectively. While, our second proposed method, Gray+CPAANN outperformed all the 

presented methods in the Table 5.2 (see Annexure). A drastic reduction in MAPE value is 

observed, from 6.51% to 4.03%, when we employed Gray_Imputation on Stage I instead of 

Mean Imputation with CPAANN. Except GRAANN and ECM+GRNN, accuracy of all the 

methods lagged by at least 10.34% from Gray+CPAANN. Even accuracy of ECM+GRNN and 

GRAANN is lagged by 8.23% and 6.77% from Gray+CPAANN respectively. 

For Wine dataset, performance of our both the proposed methods are similar to Boston 

Housing, Forest fire and Prima Indian dataset. They also outperformed all the existing methods 

presented in the Table 5.2 (see Annexure) and CPAANN alone performed better than 

Gray+CPAANN. However, Gray+CPAANN is lagged by only 0.17% from CPAANN. Except 

GRAANN, accuracy of all the methods lagged by at least 3.19% and 3.03% from CPAANN and 

Gray+CPAANN respectively. 

We also performed the Wilcoxon two-tailed signed rank test at 1% level of significance to test 

the statistical significance of the results. The Wilcoxon test values for all the proposed methods 

are presented in the Table 5.3 and 5.4 (see Annexure). Wilcoxon test is not performed with 

PSOAANN, PSOAAWNN and RBFAANN as the proposed imputation techniques outperformed 

it by a large interval. The critical value from the table for N=10 is 3 at 1% level of significance. 
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According to the Wilcoxon signed rank test, the obtained value is statistically significant if it is 

equal or smaller than the critical value from the table 

(www.sussex.ac.uk/Users/grahamh/RM1web/WilcoxonTable2005.pdf). Therefore, by observing 

the obtained values of the proposed and existed methods, we conclude that the obtained values 

from the proposed methods are statistically significant for all the datasets and with all the 

existing methods in the Table 5.2 (see Annexure). 

5.5 Conclusion 

Our chapter presented two novel methods for data imputation. If you will closely observe the 

Table 5.2 (see Annexure) then you will find out following points: 

i. CPAANN outperformed 7 out of 10 methods for all the datasets and Gray+CPAANN 

outperformed 9 out of 10 methods for all the datasets. 

ii. Gray+CPAANN performed better compared to CPAANN and all other existing methods 

listed in the Table 5.2 (see Annexure) for most of the datasets. It always didn’t perform 

better than CPAANN but where it improved accuracy of CPAANN by Gray_Imputation 

on Stage I, there it improved accuracy by significant amount but where it lagged by 

CPAANN there it is lagged by less amount in most of the datasets. 

iii. Gray+CPAANN always yielded better accuracy compared to Gray_Imputation 

techniques alone. It shows that global approximation by CPAANN always helped to 

achieve better accuracy for imputation task. 

So, our proposed method can be considered as a viable alternative to handle the missing value 

problem. Since, User intervention is required to select the parameter for both the proposed 

methods. So, direction of our future work will be concentrated on automatic and optimized 

selection of parameters. 

 

 

 

http://www.sussex.ac.uk/Users/grahamh/RM1web/WilcoxonTable2005.pdf
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OVERALL CONCLUSIONS 
 

 

 

 

 

 

 

In the first part of the study, we proposed several data imputation techniques and compared there 

results with the existing methods. We observed that our proposed methods outperformed 

existing methods by significant amount for most of the datasets. We proposed eight novel 

methods for data imputation based on the ELM, ECM, GST, PSO, Covariance matrix, PCA, 

AANN and CPNN. We resolved the randomness issue of ELM and provided a deterministic 

ELM, which performed better for our imputation and it can be applied for other problems in 

various field. We removed the requirement of user intervention for selection of Dthr value. Our 

proposed techniques can determine by themselves that - which value is optimal for clustering 

algorithm in our imputation task. So, our proposed method can be considered as a viable 

alternative to handle the missing value problem in dataset. 
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Boston Housing dataset 

The Boston housing dataset is taken from Statlib library which is maintained at Carnegie Mellon 

University. The dataset describes the housing values in the suburbs of Boston. The dataset 

contains 506 records and 13 attributes. The description of dataset is presented in the Table 

A.1.The dataset is obtained from http://archive.ics.uci.edu/ml/machine-learning-

databases/housing/housing.data. 

 

Forest Fires Dataset 

The forest fires dataset is taken from Cortez and Morais (2007).  The description of forest fires 

dataset is presented in the Table A.2. The dataset is obtained 

fromhttp://archive.ics.uci.edu/ml/machine-learning-databases/forest-fires/forestfires.csv. 

 

Auto MPG 

The Auto MPG dataset is taken from Statlib library which is maintained at Carnegie Mellon 

University. The dataset is used in the 1993 American Statistical Association Exposition. The 

dataset concerns city-cycle fuel consumption in miles per gallon, to be produced in terms of 3 

multivalued discrete and 5 continuous attributes. The description of Auto MPG dataset is 

presented in the Table A.3.The dataset is obtained fromhttp://archive.ics.uci.edu/ml/machine-

learning-databases/auto-mpg/auto-mpg.data. 

 

Body fat dataset 

The dataset lists the estimates of percentage of body fat determined by underwater weighing and 

various body circumference measurements for 252 men. The description of dataset is presented 

in table A.4.  The dataset is obtained fromhttp://lib.stat.cmu.edu/datasets/bodyfat. 

 

http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data
http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data
http://archive.ics.uci.edu/ml/machine-learning-databases/forest-fires/forestfires.csv
http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data
http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data
http://lib.stat.cmu.edu/datasets/bodyfat
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Wine Dataset 

The wine recognition dataset contains the results of chemical analysis of wines grown in the 

same region of Italy but derived from three different cultivars. The analysis determines the 

quantities of 13 constituents found in each of the three types of wines. The numbers of instances 

for the three classes of wine are 59, 71 and 48 respectively. The dataset contains 13 attributes 

and 178 records. The attributes of wine dataset are presented in the Table A.5. The dataset is 

obtained from http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data. 

 

Pima Indians Dataset 

Pima Indians dataset was taken from National Institute of Diabetes and Digestive and Kidney 

Diseases in the year 1990. It was available at 

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabete. It contains of 768 patterns of the 

patients in which 268 are tested positive for diabetes and 500 of the patients who are tested 

negative. It contains 8 features and one target class variable. Table A.6 describes the features of 

pima Indians dataset.  

 

Iris dataset 

The Iris plants dataset is the best known database found in pattern recognition literature. The 

dataset contains three classes of 50 instances each, where each class refers to a type of iris plant. 

The dataset contains 4 numeric attributes and a class attribute. The attribute information of iris 

dataset is presented in Table A.7. The dataset is obtained from 

http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data. 

 

 

 

http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabete
http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
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Spectf Dataset 

Spectf dataset contains data on cardiac Single Proton Emission Computed Tomography 

(SPECT) images. Here each patient classified into two categories: normal and abnormal.  

.Kurgan and Cios are the donors of this dataset. It contains 267 SPECT image sets (patients) 

which were processed to extract features that summarize the original SPECT images. As a result, 

44 continuous feature patterns were created for each patient. Table A.8 contains the features of 

Spectf dataset. The dataset is available at http://archive.ics.uci.edu/ml/machine-learning-

databases/spect. 

 

UK Credit dataset 

UK credit dataset (Thomas et.al, 2002) consists of 1225 patterns of the customers applied for 

credit product. It contains 14 financial ratios regarding the applicants and in those we removed 

the 3 features: phon, aes, res which corresponds to ―presence of landline or not‖, ―applicant’s 

employment status‖, ―residential status‖ of the applicant. They are removed as some are very 

irrelevant and other has many categorical values. In 12225 patterns 323 are of bad customers i.e., 

customers with very less credit and 902 are of good customers. The financial ratios of UK Credit 

dataset are tabulated in table A.9. 

 

Spanish banks dataset 

The ―Spanish banks‖ data is obtained from (Olmeda and Fernandez 1997). ‖Spanish banks‖ 

dataset contains the list of banks which were bankrupt and non-bankrupt, so the target variable 

class contains two classes: bankrupt and non-bankrupt. Spanish banking industry suffered the 

worst crisis during 1977-85 resulting in a total cost of 12 billion dollars. The ratios used for the 

failed banks were taken from the last financial statements before the bankruptcy was declared 

and the data of non-failed banks was taken from 1982 statements. This dataset contains 66 banks 

where 37 went bankrupt and 29 healthy banks. It contains 9 financial ratios and a target class 

variable. Table A.10 describes the financial ratios of Spanish bank dataset. 

http://archive.ics.uci.edu/ml/machine-learning-databases/spect
http://archive.ics.uci.edu/ml/machine-learning-databases/spect
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Turkish banks data set: 

―Turkish banks‖ dataset is a bankruptcy prediction dataset where it contains patterns of several 

banks in which some are bankrupt and some other are non-bankrupt. It was obtained from 

(Canbas & Kilic 2005), which is available at 

(http://www.tbb.org.tr/english/bulten/yillik/2000/ratios.xls). Canbas & Kilic (2005) chose only 

12 ratios as the early warning indicators that have the discriminating ability (i.e. significant level 

is <5%) for healthy and failed banks one year in advance. Among these variables, 12th variable 

has some missing values meaning that the data for some of the banks are not given. So, we filled 

those missing values with the mean value of the variable, is a general approach in data mining. 

This dataset contains 40 banks where 22 banks went bankrupt and 18 banks are healthy. Table 

A.10 describes the financial ratios of Turkish bank dataset. 

 

UK Bankruptcy Dataset 

The ―UK bankruptcy‖ dataset is taken from Beynon and Peel (2001). This dataset contains 60 

patterns among which 30 are healthy and 30 bankrupt. Each pattern corresponds to each bank. 

The dataset contains 10 financial ratios and 1 target class variable.  Table A.10 contains the 

financial ratios of UK Bankruptcy dataset. 

 

 

 

 

 

 

 

 

 

http://www.tbb.org.tr/english/bulten/yillik/2000/ratios.xls
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Fig 2.1: Missing data handling methods for numerical data 
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Fig. 3.1: Architecture of ELM  
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Fig. 3.4: Architecture of PCA-AAELM  

 

Fig. 3.3: Architecture of AAELM  
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Fig. 3.2: Principal Component Analysis 
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Fig. 3.5: Block Diagram of ECM-Imputation  

 

Fig. 3.6: Architecture of ECM-AAELM 
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Fig. 3.7: Model of Gray+PCA-AAELM 

 

 

Fig. 3.8(a): Behavior of PCA-AAELM on different activation functions 

 

Fig. 3.8(b): Behavior of ECM-AAELM on different activation functions  

0
10
20
30
40
50
60
70
80

Sigmoid

Sinh

Cloglogm

Bsigmoid

Sine

Hardlim

Tribas

Radbas

0

10

20

30

40

50

60

70
Sigmo
id
sinh

Cloglo
gm
Bsigm
oid
Sin

Hardli
m



78 
 

 

Fig. 3.8(c): Behavior of Gray+PCA-AAELM on different activation functions  

 
Fig. 3.9(a) Influence of Dthr value on MAPE results: ECM-AAELM 

 

Fig. 3.9(b) Influence of Dthr value on MAPE results for Hardlim activation function 
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Fig. 4.1 Block Diagram of the Proposed Model ECM_PSO_COV 
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Fig. 4.2: Architecture of ECM_PSO_COV+ECM-AAELM 

 

 

 

 

 

 

 

 
 

 

Fig. 4.3:  Behavior of ECM_PSO_COV+ECM_AAELM on different activation functions  
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Fig. 5.1: Counter-propagation Neural Networks 

 

 

 

Fig. 5.2: Architecture of CPNN  

 

 

 

Fig. 5.3: Flow diagram of CPNN  

 

 



82 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    Fig. 5.5: Flow Diagram of CPAANN 

 

Fig. 5.4: Architecture of CPAANN  
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Fig. 5.6: Flow Diagram of Gray+CPAANN 
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Table 2.1: Techniques for Numerical Data Imputation 

TECHNIQUES WITH CITATION  BASIC PRINCPLE OF OPERATION 
Deletion procedures 

Listwise Deletion (Song and Shepperd, 
2007) 

Eliminates all the instances with missing values.  

Pairwise Deletion (Song and Shepperd, 
2007) 

Eliminates instances only from those statistical 
analyses that require the information. 

Imputation procedures 
Hot-deck Imputation (Schafer, 1997) Replaces the missing data with values from a 

similar complete data vector.  
Mean Imputation (Little and Rubin, 
2002) 

Missing value is replaced by the mean. 

Multiple Imputation (Little and Rubin, 
2002) 

Replaces each missing value with a set of plausible 
ones that represent uncertainty about right value to 
impute.  

Regression Imputation (Little and Rubin, 
2002) 

Estimates the relationships among the variables and 
then uses coefficients to estimate the missing 
values.  

Model based procedures 
Expectation  Maximization (Little and 
Rubin, 2002) 

An iterative procedure that continues until there is a 
convergence in parameter estimates.  

Machine learning methods 
Genetic algorithms and neural networks 
(Marwala and Chakraverty, 2006) 

Genetic algorithm is used to minimize an error 
function derived from an auto associative neural 
network.  

Imputation with K-nearest neighbors 
(Batista and Monard, 2002) 

K-nearest neighbors are selected from completed 
cases. The replacement value depends on type of 
data: the mode can be used for discrete data and 
mean for continuous data.  

Missing Value Completion(MVC) 
method (Ragel and Cremilleux, 1999) 

This method extends the concept of Robust 
Association Rules Algorithm (RAR) for databases 
with multiple missing values. 

MLP Imputation (Gupta and Lam, 1996) MLP is trained using only the complete cases as a 
regression model by taking incomplete variable as a 
target and remaining variables as input.  

Neuro-fuzzy neural networks (Gabrys, 
2002) 

Missing values are processed with general fuzzy 
min-max neural network architecture.  
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SOM Imputation (Samad and Harp, 
1992) 

The value to be imputed based on the activation 
group of nodes in the missing dimensions.  

Generalized regression neural network 
Ensemble for Multiple Imputation 
(GEMI) (Gheyas and Smith, 2010) 

Imputation performed based on nonparametric 
Generalized regression neural network Ensemble 
for Multiple Imputation. 

Nonparametric iterative imputation 
algorithm (NIIA) (Zhang et.al., 2011) 

It utilize information within incomplete instances 
(instances with missing values) when estimating 
missing values. 

A method based on an evolutionary 
algorithm (Figueroa et.al., 2011) 

It used a genetic algorithm based on the 
minimization of an error function derived from their 
covariance matrix and vector of means is presented. 

Fuzzy C-Means (FCM) (Nuovo, 2011) Imputation performed based on the most famous 
fuzzy clustering algorithm. 

Nearest Neighbor (NN) imputation 
(Yuan Li and Parker, 2012) 

It estimates missing data in Wireless Sensor 
Networks (WSNs) by learning spatial and temporal 
correlations between sensor nodes. 

kNN (k nearest neighbor) (Zhang, 2012) Iteratively imputing missing data, named GkNN 
(gray kNN) imputation to deal with heterogeneous 
(i.e., mixed-attributes) data. 

A method based on dynamic 
programming (Nelwamondoet.al., 2013) 

Used a combination of dynamic programming, 
neural networks and genetic algorithms (GA) on 
suitable subsets of the input data for imputation. 

Biclustering-based approach (França 
et.al., 2013) 

This approach is based on the Mean Squared 
Residue metric, used to evaluate the degree of 
coherence among objects of a dataset. 

Fuzzy c-means clustering hybrid 
approach (I. B. Aydilek and A. Arslan, 
2013) 

Utilized a fuzzy c-means clustering hybrid approach 
that combines support vector regression and a 
genetic algorithm. 

 

  



87 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 

Table 3.1: List of activation functions with their formula 

Activation function names Formula for Activation function 
Sigmoid 
 

   H = 1. / (1 + exp (-x)) 
 

Sinh 
 

   H = sinh (x) 

Cloglogm 
 

   H=1-2*exp (-0.7*exp (x)) 
 

Bipolar Sigmoid (Bsigmoid)  
 

   H= (1 - exp (-x)). / (1 + exp (-x)) 
 

Sin 
 

   H = sin (x) 

Hardlim 
 

   Hardlim (x) = 1 if x ≥ 0 
                       = 0, Otherwise 

Tribas 
 

   H = Tribas (x) = 1 - abs(x),  
                              if -1 <= x <= 1 
                           = 0, Otherwise 

Radbas 
 

   H = Radbas (x) = exp (-x^2) 

Softplus (soft) 
 

   H=log (1+exp (x)) 

Gaussian 
 

   H=exp (-x.*x*0.5) 

Rectifier 
 

   H=max (x, 0); 
 

 

Table 3.2: Average MAPE value over 10 folds ECM-AAELM 

 
Sigmo

id 
sinh Cloglo

gm 
Bsigm

oid 
Sin Hardl

im 
Triba

s 
Radb

as 
Softpl

us 
Gauss

ian 
Rectif

ier 
Min. 

Auto mpg 17.38 17.49 17.47 17.44 17.43 60.78 17.4 18.07 17.46 18.05 17.46 17.38 

Body fat 5.34 5.37 5.38 5.38 5.39 11.19 5.33 6.25 5.34 6.28 5.38 5.33 

Boston 
Housing 

16.79 17.32 17.29 17.28 17.27 40.1 16.48 17.07 16.9 17.15 17.29 16.48 

Forest fires 21.54 21.63 21.61 21.58 21.56 23.06 21.59 21.93 21.62 21.84 21.59 21.54 

Iris 5.13 5.12 5.11 5.11 5.1 23.69 5.17 5.28 5.14 5.28 5.11 5.1 

Prima Indian 23.95 27.5 27.49 27.48 27.47 23.96 24.56 24.05 23.99 23.99 27.48 23.95 

Spanish 22.41 23.67 23.38 23.43 23.37 52.8 24.79 25.12 22.09 25.91 23.48 22.09 

Spectf 8.07 8.17 8.18 8.19 8.2 15.23 8.08 8.2 8.05 8.15 8.19 8.05 

Turkish 22.22 22.16 22.15 22.18 22.20 65.26 21.49 24.85 22.20 25.81 22.17 21.49 

UK 
bankruptcy 

40.63 44.47 44.26 44.28 44.21 41.67 40.06 41.51 40.77 40.92 44.34 40.06 

UK Credit 27.09 27.1 27.09 27.08 27.07 27.95 26.85 27.33 27.13 27.4 27.09 26.85 

Wine 14.88 14.95 14.93 14.91 14.9 30.05 14.88 15.54 14.94 15.57 14.93 14.88 

 



88 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3: Average MAPE value over 10 folds PCA-AAELM 

  Sigmoid Sinh Cloglogm Bsigmoid Sine Hardlim Tribas Radbas Softplus Min. 

Auto mpg 30.41 31.07 28.67 29.18 28.9 42.19 47.45 43.28 28.63 28.63 

Body fat  6.06 8.24 6.92 6.75 7.67 11.21 8.65 6.69 6.01 6.01 

Boston Housing 22.17 22.96 23.64 23.41 24.78 41.46 26.86 23.92 20.9 20.9 

Forest fires  19.41 21.89 21.03 21.03 20.82 22.19 21.74 20.22 19.45 19.41 

Iris  14.48 12.53 11.34 11.49 12.1 23.73 14.01 10.23 13.17 10.23 

Prima Indian  22.62 22.48 22.08 22.06 22.15 23.96 23.68 22.10 22.07 22.06 

Spanish 46.81 31.27 30.4 30.09 35.19 52.28 70.3 60.38 37.27 30.09 

Spectf  11.7 9.73 13.61 12.48 10.81 13.87 13.72 12.75 9.11 9.11 

Turkish 30.18 39.03 39.67 39.22 41.25 55.91 49.43 36.29 31.56 30.18 

UK bankruptcy 38.54 37.7 39.32 39.18 41.14 44.37 44.27 42.02 38.92 37.7 

UK Credit 27.12 29.93 27.4 27.44 26.53 25.27 28.47 28.86 28.36 25.27 

Wine  17.97 17.8 17.87 18.04 18.23 29.75 17.88 16.6 17.38 16.6 
 

Table 3.4: Average MAPE value over 10 folds Gray+PCA-AAELM 

  
Sigm
oid 

Sinh 
Clogl
ogm 

Bsig
moid 

Sine 
Hard
lim 

Triba
s 

Radb
as 

Softp
lus 

Minimum 

Auto mpg 20.37 17.92 17.44 16.92 17.99 36.75 44.05 41.55 19.13 16.92 

Boby fat  5.43 7.18 6.64 6.34 7.42 11.22 7.80 6.42 5.41 5.41 
Boston 
Housing 18.22 18.82 19.55 19.16 20.34 32.31 22.82 21.42 17.46 17.46 

Forest fires  20.89 23.92 23.70 23.68 23.38 21.31 24.19 23.44 21.30 20.89 

Iris  7.27 6.50 5.87 5.79 6.47 22.68 8.98 6.13 6.58 5.79 

Prima indian  22.43 25.92 24.04 24.02 23.51 23.96 24.89 23.05 22.03 22.03 

Spanish 39.12 30.49 28.26 28.06 32.18 52.28 57.31 44.26 29.44 28.06 

Spectf  10.05 9.75 12.75 11.12 10.71 12.88 12.82 11.15 8.38 8.38 

Turkish 27.38 36.29 30.67 30.33 29.98 56.53 43.55 37.88 28.27 27.38 
UK 
bankruptcy 37.95 38.71 38.97 39.21 39.82 42.69 43.18 41.78 38.59 37.95 

UK Credit 27.79 29.52 28.54 28.56 28.68 28.04 30.12 28.76 27.86 27.79 

Wine  15.81 15.54 15.27 15.33 15.47 24.48 14.95 14.78 15.43 14.78 
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Table 3.5: Average MAPE value over 10 folds 

 
Mea

n 

K-
Mean
s+ML
P[1] 

K-
Medoi
ds+M
LP[2] 

K-
Mean
s+GR

NN 
[2] 

K-
Medoi
ds+GR
NN [2] 

ECM+
GRNN 

[2] 

PSO_
COV 

ECM_
Imput
ation 

ECM-
AAEL

M 

PCA-
AAEL

M 

Gray + 
PCA-
AAEL

M 

Auto mpg 59.7 23.75 20.70 20.27 16.66 17 24.53 18.03 17.38 28.63 16.92 

Body fat 
11.6

1 
7.83 6.46 6.96 5.37 5.56 7.13 6.31 5.33 6.01 5.41 

Boston 
Housing 

37.7
7 

21.01 17.69 19.57 17.68 18.08 24.85 17.84 16.48 20.9 17.46 

Forest 
fires 

24.7
2 

26.61 24.46 26.21 22.97 24.38 24.85 22.29 21.54 19.41 20.89 

Iris 
23.5

7 
9.41 9.17 8.79 8.04 6.3 8.71 5.27 5.1 10.23 5.79 

Prima 
Indian 

24.0
2 

29.7 26.63 28.3 26.33 26.51 27.57 27.16 23.95 22.06 22.03 

Spanish 
55.5

3 
39.91 32.45 37.96 26.01 34.11 33.25 31.98 22.09 30.09 28.06 

Spectf 
14.8

5 
12.14 10.65 10.61 10.22 10.35 10.34 10.21 8.05 9.11 8.38 

Turkish 
66.0

0 
33.01 26.90 25.9 19.34 22.34 30.20 27.90 21.49 30.18 27.38 

UK 
bankruptc

y 

37.0
7 

30.96 29.69 29.06 28.39 29.07 35.67 
46.14 

40.06 37.7 37.95 

UK Credit 
28.4

3 
32.17 25.42 29.8 24.04 21.93 37.94 27.40 26.85 25.27 27.79 

Wine 
29.9

9 
21.58 15.73 16.21 14.75 15.61 18.98 15.61 14.88 16.6 14.78 

 

Table 3.6: Wilcoxon signed rank test values of PCA_AAELM 

PCA_AAELM 
Vs. 

K-
Means+MLP 

K-
Medoids+

MLP  

K-
Means+
GRNN  

K-
Medoids
+GRNN  

ECM+G
RNN 

ECM_Imputat
ion  

Auto mpg 1.86 2.17 2.37 2.78 2.78 2.78 

Body fat 1.66 0.94 1.66 0.64 0.43 0.23 

Boston Housing 0.23 0.94 0.33 1.45 1.45 2.17 

Forest fires 2.78 2.06 2.57 2.17 2.06 1.96 

Iris 0.33 0.43 0.94 1.55 2.47 2.78 

Prima Indian 2.78 2.78 2.68 2.47 1.76 2.78 

Spanish 1.96 0.43 0.13 1.04 0.13 0.84 

Spectf 2.47 2.06 2.37 1.96 1.45 2.27 

Turkish 0.64 0.84 0.84 1.76 1.35 0.43 

UK bankruptcy 1.66 2.06 2.06 1.86 1.86 1.66 

UK Credit 1.76 0.43 1.15 0.54 0.94 0.84 

Wine 2.57 0.54 0.33 1.15 0.54 0.74 
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Table 3.7: Wilcoxon signed rank test values of ECM_AAELM 

 

K-
Means+MLP 

vs 
ECM_AAEL

M 

K-
Medoids+
MLP vs 

ECM_AAE
LM 

K-
Means+
GRNN 

vs 
ECM_A
AELM 

K-
Medoids
+GRNN 

vs 
ECM_A
AELM 

ECM+G
RNN vs 

ECM_AAE
LM 

ECM_Imputat
ion vs 

ECM_AAELM 

Auto mpg 2.27 1.55 1.35 0.03 0.03 0.64 

Body fat 2.47 1.66 1.35 0.13 0.13 2.78 

Boston Housing 2.57 0.84 1.55 0.94 0.84 0.74 

Forest fires 2.47 1.25 1.96 0.43 1.45 2.78 

Iris 2.37 2.37 2.27 1.66 1.15 2.17 

Prima Indian 2.68 2.17 2.37 1.96 1.76 2.57 

Spanish 2.68 2.47 1.55 0.33 0.64 2.06 

Spectf 2.78 2.78 2.78 2.78 2.37 2.78 

Turkish 0.43 0.13 0.84 1.76 0.54 2.47 

UK bankruptcy 1.45 2.17 2.27 2.57 2.37 2.57 

UK Credit 1.45 1.04 0.43 1.25 1.55 0.84 

Wine 2.68 0.94 1.25 0.13 0.74 1.76 
 

Table 3.8: Wilcoxon signed rank test values of Gray+PCA_AAELM 

 

K-
Means+MLP 

vs 
Gray+PCA_A

AELM 

K-
Medoids+
MLP vs 

Gray+PCA
_AAELM 

K-
Means+G
RNN vs 

Gray+PC
A_AAEL

M 

K-
Medoids
+GRNN 

vs 
Gray+PC
A_AAE

LM 

ECM+GR
NN vs 

Gray+PCA_
AAELM 

ECM_Imput
ation vs 

Gray+PCA_A
AELM 

Auto mpg 2.27 1.55 1.66 0.33 0.33 0.94 

Body fat 2.57 1.86 1.55 0.43 0.23 1.25 

Boston Housing 2.17 0.94 1.25 0.13 0.43 0.03 

Forest fires 2.47 1.45 2.06 0.74 1.55 1.86 

Iris 2.37 2.06 2.06 1.25 0.23 0.94 

Prima Indian 2.78 2.47 2.78 2.37 1.76 2.78 

Spanish 2.27 1.25 0.74 0.54 0.33 0.13 

Spectf 2.78 2.78 2.78 2.78 2.47 2.78 

Turkish 0.03 0.54 0.54 1.76 1.55 0.23 

UK bankruptcy 1.86 2.27 2.17 2.57 2.57 1.04 

UK Credit 1.15 1.25 0.23 1.35 2.17 0.74 

Wine 2.78 1.25 1.25 0.23 0.64 0.03 
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Table 3.9: Average MAPE value over 10 folds AAELM 

 
Mean 

K-
Means+

MLP 

Unifo
rm-

Sigmoid 

Unifor
m -

Gaussian 

Gaussi
an-

Sigmoid 

Gaussi
an-

Gaussian 

Logist
ic-

Sigmoid 

Logist
ic-

Gaussian 

Auto mpg 59.70 23.75 35.11 35.96 33.99 33.99 37.2 47.24 

Body fat 11.61 7.83 12.92 25.91 11.68 12.09 13.03 33.66 

Boston 
Housing 

37.77 21.01 29.2 35.65 25.42 26.43 29.38 42.2 

Forest 
fires 

24.72 26.61 22 31.73 22.33 22.91 22.17 47.74 

Iris 23.57 9.41 21.96 19.7 20.81 17.54 21.11 18.95 

Prima 
Indian 

24.02 29.7 23.41 26.29 23.03 24.4 22.88 29.34 

Spanish 55.53 39.91 43.59 133.23 41.91 60.87 38.56 270.48 

Spectf 14.85 12.14 17.05 29.20 22.87 22.89 24.29 36.52 

Turkish 66.00 33.01 37.49 98.01 33.52 40.13 37.94 185.77 

UK 
bankruptcy 

37.07 30.96 36.05 42.51 38.53 37.7 38.58 49.43 

UK Credit 28.43 32.17 30.84 36.04 31.92 32.19 30.83 40.41 

Wine 29.99 21.58 22.65 33.27 21.26 21.92 24.07 47.59 

 

Table 4.1: Average MAPE value over 10 folds ECM_PSO_COV+ECM_AAELM 

  
Sigmo

id 
Bsig
moid 

Sin 
Hardli

m 
Triba

s 
Radb

as 
Sinh 

Cloglo
gm 

Softp
lus 

Gaus
sian 

Rectifi
er 

Auto mpg 14.69 14.84 14.86 60.78 14.75 15.38 14.80 14.82 14.71 15.37 14.83 

Boby fat  4.64 4.69 4.69 11.19 4.64 5.29 4.68 4.69 4.66 5.32 4.68 
Boston 

Housing 14.44 14.65 14.64 40.10 14.48 15.00 14.69 14.66 14.48 15.04 14.66 

Forest fires  18.17 18.24 18.24 23.06 18.18 18.43 18.26 18.25 18.18 18.39 18.25 

Iris  4.87 4.88 4.89 23.69 4.87 4.83 4.87 4.88 4.86 4.83 4.87 
Prima 
Indian  24.55 24.54 24.54 23.96 24.60 24.59 24.54 24.54 24.54 24.58 24.54 

Spanish 27.02 31.47 30.98 52.80 27.67 20.63 32.72 31.16 26.86 18.53 31.88 

Spectf  8.23 8.33 8.34 15.23 8.18 9.41 8.31 8.32 8.22 9.54 8.32 

Turkish 19.25 21.09 21.10 65.26 18.99 18.97 21.05 20.98 19.36 19.18 21.08 
UK 

bankruptcy 30.93 33.29 33.28 41.67 28.66 29.27 33.33 33.21 31.11 29.90 33.30 

UK Credit  26.38 29.18 29.13 27.95 25.51 24.80 29.36 29.15 26.41 24.79 29.24 

Wine  12.60 12.74 12.73 30.05 12.80 12.96 12.79 12.76 12.65 12.92 12.76 
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Table 4.2: Comparison of Average MAPE value of various methods over 10 folds  

 

Table 4.3: Wilcoxon signed rank test values for ECM_PSO_COV 

 

K-
Means+
MLP vs 

ECM_PS
O_COV 

K-
Medoids
+MLP vs 
ECM_PS
O_COV 

K-
Means+G
RNN vs 

ECM_PS
O_COV 

K-
Medoids+G

RNN vs 
ECM_PSO

-COV 

ECM_I
mputation 

vs 
ECM_PS
O_COV 

ECM+
GRNN 

vs 
ECM_PS
O_COV 

PSO_C
OV vs 

ECM_PS
O_COV 

 
GRAA

NN vs 
ECM_PS
O_COV 

 
Auto 

mpg 
2.78 2.78 2.47 0.84 2.68 0.94 2.78 0.03 

Body fat 2.57 2.37 1.35 0.33 2.06 0.13 2.06 0.03 

Boston 
Housing 

2.57 2.57 2.78 2.68 2.78 2.47 2.57 1.35 

Forest 
fires 

2.78 2.78 2.78 2.78 2.78 2.47 2.17 0.54 

Iris 2.78 2.78 2.47 2.06 2.17 1.15 2.37 2.27 

Prima 
Indian 

2.57 1.86 2.27 1.45 2.78 1.66 1.55 0.94 

Spanish 2.17 1.35 2.06 0.13 2.68 1.45 2.06 0.54 

Spectf 2.68 1.86 2.17 1.04 2.78 0.13 1.04 2.78 

Turkish 1.66 0.23 1.55 0.84 2.27 0.33 1.96 1.04 
UK 

bankruptc
y 

0.03 0.13 1.15 0.64 2.17 0.33 1.76 0.54 

UK Credit 1.86 0.03 1.35 0.43 2.27 1.25 2.47 2.27 

Wine 2.78 2.78 2.78 1.55 2.78 2.17 2.68 0.13 
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Table 5.1: Parameter Selection in CPNN Toolbox 

Parameter Selection for 
Parameter Selected 

for CPAANN 
Weights initialization function Linear 

Neighbourhood Hexagonal 
Shape of the map Sheet 

Neighbourhood function Gaussian 
Learning function Linear 

Number of the column with labels 1 
Maximum Length of the Network 20 
Maximum Width of the Network 20 

Number of epochs in Rough training phase 18 
Number of epochs in Fine training phase 230 

Initial learning rate in Rough training phase 0.10 
Initial learning rate in Fine training phase 0.05 

 

Table 4.4: Wilcoxon signed rank test values for ECM_PSO_COV+ECM_AAELM 

 

K-
Means+
MLP vs 
ECM_P
SO_CO
V+EC
M_EL

M 

K-
Medoids+
MLP vs 

ECM_PS
O_COV+
ECM_EL

M 

K-
Means+G
RNN vs 

ECM_PS
O_COV+
ECM_EL

M 

K-
Medoids+
GRNN vs 
ECM_PS
O_COV+
ECM_EL

M 

ECM+GR
NN vs 

ECM_PS
O_COV+
ECM_EL

M 

ECM_Im
putation 

vs 
ECM_PS
O_COV+
ECM_EL

M 

PSO_CO
V vs 

ECM_PS
O_COV+
ECM_EL

M 

GRAANN 
vs 

ECM_PS
O_COV+
ECM_EL

M 

Auto 
mpg 

2.78 2.78 2.68 1.55 1.55 2.78 2.78 1.15 

Body 
fat 

2.68 2.47 1.86 0.94 1.25 2.78 2.27 0.64 

Boston 
Housin

g 
2.68 2.78 2.78 2.78 2.78 2.27 2.68 1.86 

Forest 
fires 

2.78 2.78 2.78 2.78 2.68 2.78 2.47 1.35 

Iris 2.78 2.78 2.57 2.17 1.25 1.25 2.37 2.47 

Prima 
Indian 

2.68 2.37 2.47 2.27 1.76 2.78 2.17 0.64 

Spanish 2.78 2.27 2.68 1.55 2.57 2.78 2.78 2.06 

Spectf 2.78 2.78 2.78 2.78 2.78 2.78 2.78 1.25 

Turkish 2.47 1.15 2.06 0.23 1.25 2.78 2.27 0.43 

UK 
bankru

ptcy 
1.15 0.94 0.13 1.55 1.25 2.78 1.76 0.13 

UK 
Credit 

1.96 0.33 1.45 0.23 1.04 2.47 2.68 2.06 

Wine 2.78 2.78 2.78 2.37 2.57 2.78 2.78 0.43 
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Table 5.2: Average MAPE value of various methods over 10-folds 

 

K-
Mea

ns+M
LP 

K-
Medoi
ds+ML

P 

K-
Mea
ns+G
RNN 

K-
Medoi
ds+GR

NN 

ECM+
GRNN 

PSO_
COV 

PSOA
ANN 

PSOA
AWN

N 

RBF 
AAN

N 

GRA
ANN 

CPAA
NN 

Gray+CPAANN 

Stage 
I 

Stage 
II 

Auto 
mpg 

23.75 20.70 20.27 16.66 17 24.53 37.59 38.16 62.53 15.54 18.32 
16.73 

15.31 

Body 
fat 

7.83 6.46 6.96 5.37 5.56 7.13 7.61 9.21 25.4 4.61 5.25 
7.65 

4.71 

Boston 
Housin

g 
21.01 17.69 19.57 17.68 18.08 24.85 24.61 30.94 98.87 15.38 14.86 

19.28 
15.01 

Forest 
fires 

26.61 24.46 26.21 22.97 24.38 24.85 22.69 26.62 59.24 18.47 16.97 
22.89 

17.91 

Iris 9.41 9.17 8.79 8.04 6.3 8.71 15.84 12.83 26.93 5.75 6.51 5.34 4.03 

Prima 
Indian 

29.7 26.63 28.3 26.33 26.51 27.57 21.72 23.68 32.28 23.89 18.21 
28.06 

19.34 

Spanish 39.91 32.45 37.96 26.01 34.11 33.25 60.95 48.81 
847.0

2 
23.28 17.13 

36.29 
14.21 

Spectf 12.14 10.65 10.61 10.22 10.35 10.34 16.69 43.3 21.12 8.41 8.61 11.6 8.53 

Turkish 33.01 26.90 25.9 19.34 22.34 30.20 53.56 33.45 188.8 17.25 16.07 36.63 17.37 

UK 
bankru

ptcy 
30.96 29.69 29.06 28.39 29.07 35.67 33.47 31.48 

141.6
1 

26.85 21.96 39.75 20.58 

UK 
Credit 

32.17 25.42 29.8 24.04 21.93 37.94 33.94 38.64 45.53 20.47 22.88 28.9 13.70 

Wine 21.58 15.73 16.21 14.75 15.61 18.98 22.16 23.64 39.11 12.87 11.56 17.58 11.72 

 

Table 5.3: Wilcoxon signed rank test values of various proposed methods vs CPAANN 

CPAANN 
vs.  

 

K-
Mean
s+ML

P 

K-
Med
oids+
MLP 

K-
Mean
s+GR
NN 

K-
Medoid
s+GRNN 

EC
M+

GRN
N 

ECM_Im
putation 

PSO_CO
V 

GRAAN
N 

Auto mpg 2.37 0.84 1.04 0.74 0.64 0.03 2.68 2.78 

Body fat 1.86 1.55 1.86 1.25 0.94 0.94 2.17 0.43 

Boston Housing 2.68 2.17 2.27 2.06 2.27 1.66 2.68 0.74 

Forest fires 2.78 2.68 2.78 2.68 2.68 2.47 2.68 1.25 

Iris 1.86 1.86 1.66 1.25 0.03 1.76 1.66 0.94 

Prima Indian 2.78 2.78 2.78 2.78 2.06 2.78 2.78 2.78 

Spanish 2.78 2.06 2.68 0.94 2.27 2.57 2.78 1.96 

Spectf 2.78 2.68 2.78 2.57 2.27 2.78 2.68 0.54 

Turkish 2.57 1.55 2.57 0.33 1.86 2.68 2.47 0.84 

UK bankruptcy 2.17 1.86 0.74 1.76 1.76 2.57 2.47 1.35 

UK Credit 2.57 0.23 1.86 0.23 0.13 1.15 2.78 1.04 

Wine 2.78 2.78 2.78 2.37 2.47 2.37 2.78 1.55 
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Table A.1: Attributes of Boston housing dataset 

Attribute Description 
 CRIM       per capita crime rate by town 
 ZN         Proportion of residential land zoned for lots over 25,000 sq.ft. 
 INDUS     proportion of non-retail business acres per town 

 CHAS       
Charles River dummy variable (= 1 if tract bounds river; 0 

otherwise) 
 NOX        nitric oxides concentration (parts per 10 million) 
 RM         average number of rooms per dwelling 
 AGE        proportion of owner-occupied units built prior to 1940 
 DIS        weighted distances to five Boston employment centres 
 RAD       index of accessibility to radial highways 
 TAX      full-value property-tax rate per $10,000 
 PTRATIO   pupil-teacher ratio by town 
 B        1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town 
 LSTAT     % lower status of the population 
 MEDV      Median value of owner-occupied homes in $1000's 

 

 

 

Table 5.4: Wilcoxon signed rank test values of various proposed methods vs Gray+CPAANN 

Gray+CPAANN 
vs.  

 

K-
Mea
ns+
MLP 

K-
Med
oids+
MLP 

K-
Mea
ns+G
RNN 

K-
Med
oids+
GRN

N 

ECM
+GR
NN 

ECM_I
mputa

tion 

PSO_C
OV 

GRAANN 

Auto mpg 2.47 2.06 1.96 1.25 1.35 2.27 2.57 0.13 

Body fat 2.68 2.57 2.27 1.15 1.15 2.37 2.68 0.23 

Boston Housing 2.47 2.68 2.68 2.57 1.96 1.86 2.47 0.43 

Forest fires 2.78 2.47 2.78 2.47 2.57 2.78 2.57 0.74 

Iris 2.78 2.78 2.78 2.68 2.17 2.06 2.78 2.68 

Prima Indian 2.78 2.78 2.78 2.78 1.96 2.78 2.78 2.78 

Spanish 2.78 2.68 2.78 2.06 2.68 2.78 2.78 2.37 

Spectf 2.78 2.68 2.78 2.68 2.37 2.78 2.68 0.33 

Turkish 2.37 1.15 2.27 0.23 1.25 2.37 2.17 0.23 

UK bankruptcy 2.17 2.17 0.94 2.57 2.57 2.78 2.78 1.86 

UK Credit 2.37 0.23 1.76 0.33 0.74 1.35 2.78 2.17 

Wine 2.78 2.78 2.78 2.47 2.57 2.27 2.78 1.15 
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Table A.2: Attributes of Forest fires dataset 

Attribute Description 
 X  x-axis spatial coordinate within the Montesinho park map: 1 to 9 
 Y  y-axis spatial coordinate within the Montesinho park map: 2 to 9 
 MONTH  month of the year: "jan" to "dec" 
 DAY  day of the week: "mon" to "sun" 
 FFMC  FFMC index from the FWI system: 18.7 to 96.20 
 DMC   DMC index from the FWI system: 1.1 to 291.3 
 DC  DC index from the FWI system: 7.9 to 860.6 
 ISI  ISI index from the FWI system: 0.0 to 56.10 
 TEMP  temperature in Celsius degrees: 2.2 to 33.30 
 RH relative humidity in %: 15.0 to 100 
 WIND  wind speed in km/h: 0.40 to 9.40 
 RAIN outside rain in mm/m2 : 0.0 to 6.4 
 AREA  the burned area of the forest (in ha): 0.00 to 1090.84 

 

Table A.3: Attributes of Auto MPG dataset 

Attribute Predictor variable name 
C1  mpg 
C2  cylinders 
C3  displacement 
C4  horsepower 
C5  weight 
C6  acceleration 
C7  model year 
C8  origin 
C9  car name 

 

Table A.4: Attributes of Bodyfat dataset 

Attribute Predictor variable name 
X1 Density determined from underwater weighing 
X2  Percent body fat from Siri's (1956) equation 
X3  Age (years) 
X4  Weight (lbs) 
X5  Height (inches) 
X6  Neck circumference (cm) 
X7  Chest circumference (cm) 
X8  Abdomen 2 circumference (cm) 
X9  Hip circumference (cm) 
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X10  Thigh circumference (cm) 
X11  Knee circumference (cm) 
X12  Ankle circumference (cm) 
X13  Biceps (extended) circumference (cm) 
X14  Forearm circumference (cm) 
X15  Wrist circumference (cm) 

 

Table A.5: Attributes of Wine dataset 

Attribute Predictor Variable name 
A1  Alcohol 
A2  Malic acid 
A3  Ash 
A4  Alcalinity of ash   
A5  Magnesium 
A6  Total phenols 
A7  Flavanoids 
A8  Nonflavanoid phenols 
A9  Proanthocyanins 
A10 Color intensity 
A11 Hue 
A12 OD280/OD315 of diluted wines 
A13 Proline  

 

Table A.6: Attributes of Prima Indian dataset 

Attributes Predictor Variable Name 
F1 Number of times pregnant 
F2 Plasma glucose concentration a 2 hours in an oral glucose tolerance test 
F3 Diastolic blood pressure (mm Hg) 
F4 Triceps skin fold thickness (mm) 
F5 2-Hour serum insulin (mu U/ml) 
F6 Body mass index (weight in kg/(height in m)^2) 
F7 Diabetes pedigree function 
F8 Age (years) 
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Table A.7: Attributes of Iris dataset 

Attribute Predictor Variable name 
X1 sepal length in cm 
X2 sepal width in cm 
X3 petal length in cm 
X4 petal width in cm 

CLASS Iris Setosa 
Iris  Versicolour 
Iris Virginica 

 

 

Table A.8:  Attributes of Spectf dataset 

Attributes Predictor Variable name 
F1 F1R: continuous (count in ROI (region of interest) 1 in rest) 
F2 F1S: continuous (count in ROI 1 in stress) 
F3 F2R: continuous (count in ROI 2 in rest) 
F4 F2S: continuous (count in ROI 2 in stress) 
F5 F3R: continuous (count in ROI 3 in rest) 
F6 F3S: continuous (count in ROI 3 in stress) 
F7 F4R: continuous (count in ROI 4 in rest) 
F8 F4S: continuous (count in ROI 4 in stress) 
F9 F5R: continuous (count in ROI 5 in rest) 
F10 F5S: continuous (count in ROI 5 in stress) 
F11 F6R: continuous (count in ROI 6 in rest) 
F12 F6S: continuous (count in ROI 6 in stress) 
F13 F7R: continuous (count in ROI 7 in rest) 
F14 F7S: continuous (count in ROI 7 in stress) 
F15 F8R: continuous (count in ROI 8 in rest) 
F16 F8S: continuous (count in ROI 8 in stress) 
F17 F9R: continuous (count in ROI 9 in rest) 
F18 F9S: continuous (count in ROI 9 in stress) 
F19 F10R: continuous (count in ROI 10 in rest) 
F20 F10S: continuous (count in ROI 10 in stress) 
F21 F11R: continuous (count in ROI 11 in rest) 
F22 F11S: continuous (count in ROI 11 in stress) 
F23 F12R: continuous (count in ROI 12 in rest) 
F24 F12S: continuous (count in ROI 12 in stress) 
F25 F13R: continuous (count in ROI 13 in rest) 
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F26 F13S: continuous (count in ROI 13 in stress) 
F27 F14R: continuous (count in ROI 14 in rest) 
F28 F14S: continuous (count in ROI 14 in stress) 
F29 F15R: continuous (count in ROI 15 in rest) 
F30 F15S: continuous (count in ROI 15 in stress) 
F31 F16R: continuous (count in ROI 16 in rest) 
F32 F16S: continuous (count in ROI 16 in stress) 
F33 F17R: continuous (count in ROI 17 in rest) 
F34 F17S: continuous (count in ROI 17 in stress) 
F35 F18R: continuous (count in ROI 18 in rest) 
F36 F18S: continuous (count in ROI 18 in stress) 
F37 F19R: continuous (count in ROI 19 in rest) 
F38 F19S: continuous (count in ROI 19 in stress) 
F39 F20R: continuous (count in ROI 20 in rest) 
F40 F20S: continuous (count in ROI 20 in stress) 
F41 F21R: continuous (count in ROI 21 in rest) 
F42 F21S: continuous (count in ROI 21 in stress) 
F43 F22R: continuous (count in ROI 22 in rest) 
F44 F22S: continuous (count in ROI 22 in stress) 

 

Table A.9: Description of UK Credit dataset 

Attributes Predictor variable name  

F1 Year of birth dob 
F2 Number of children nkid 
F3 Number of other dependents dep 
F4 Spouse's income sinc 
F5 Applicant's income dainc 
F6 Value of Home dhval 

F7 Mortgage balance outstanding Dmort 

F8 Outgoings on mortgage or rent doutm 
F9 Outgoings on Loans doutl 
F10 Outgoings on Hire Purchase douthp 
F11 Outgoings on credit cards doutcc 
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Table A.10: Description of Banking datasets 

SNO.Predictor Variable Name  

Turkish banks’ data  

1 Interest Expenses/Average Profitable Assets IE/APA 

2 Interest Expenses/Average Non-Profitable Assets IE/ANA 

3 (Share Holders’ Equity + Total Income)/(Deposits + Non-
Deposit Funds) 

(SE+TI)/(D+NF) 

4 Interest Income/Interest Expenses II+IE 

5 (Share Holders’ Equity + Total Income)/Total Assets (SE+TI)/TA 

6 (Share Holders’ Equity + Total Income)/(Total Assets + 
Contingencies &Commitments) 

(SE+TI)/(TA+CC) 
 

7 Networking Capital/Total Assets NC/TA 

8 (Salary And Employees’ Benefits + Reserve For 
Retirement)/No. Of  Personnel 

(SEB+RR)/P 

9 Liquid Assets/(Deposits + Non-Deposit Funds) LA/(D+NF) 

10 Interest Expenses/Total Expenses IE/TE 

11 Liquid Assets/Total Assets LA/TA 

12 Standard Capital Ratio SCR 

Spanish banks’ data  

1 Current Assets/Total Assets CA/TA 

2 Current Assets-Cash/Total Assets CAC/TA 

3 Current Assets/Loans CA/L 

4 Reserves/Loans R/L 

5 Net Income/Total Assets NI/TA 

6 Net Income/Total Equity Capital NI/TEC 

7 Net Income/Loans NI/L 

8 Cost Of Sales/Sales CS/S 

9 Cash Flow/Loans CF/L 

UK banks’ data  

1 Sales SALES 

2 Profit before tax/capital employed (%) PBT/C 

3 Funds flow/Total liabilities FF/TL 

4 (Current liabilities + long term debit)/total assets (CL/LTD)/TA 

5 Current liabilities/total assets CL/TA 

6 Current assets/current liabilities CA/CL 

7 Current assets-stock/Current liabilities (CA-S)/CL 

8 Current assets-current liabilities/total assets (CA-CL)/TA 

9 LAG(Number of days between account year end and the 
date of annual report 

LAG 

10 Age AGE 

 


